Уравнения, допускающие понижение порядка. Понижение порядка дифференциального уравнения – основной метод решения уравнений высших порядков
Понижение порядка дифференциального уравнения – основной метод решения уравнений высших порядков. Этот метод дает возможность сравнительно легко находить решение, однако, он применим далеко не ко всем уравнениям. Рассмотрим случаи, когда возможно понижение порядка.
1) Уравнения вида y(n) = f(x).
Если f(x) – функция непрерывная на некотором промежутке a < x < b, то решение может быть найдено последовательным интегрированием.
…………………………………………………………….
Пример. Решить уравнение с начальными условиями
x0 = 0, y0 = 1,
Решаем с помощью понижения порядка:
.
Подставим начальные условия:
.
Получаем частное решение (решение задачи Коши): . 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Поиск по сайту:
|