АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнения, допускающие понижение порядка. Понижение порядка дифференциального уравнения – основной метод решения уравнений высших порядков

Читайте также:
  1. I Классификация кривых второго порядка
  2. II ОБЩИЕ НАЧАЛА ПУБЛИЧНО-ПРАВОВОГО ПОРЯДКА
  3. II. САКРАЛЬНАЯ ГЕОМЕТРИЯ: МЕТАФОРА УНИВЕРСАЛЬНОГО ПОРЯДКА
  4. IV.1. Общие начала частной правозащиты и судебного порядка
  5. V2: ДЕ 53 - Способы решения обыкновенных дифференциальных уравнений первого порядка
  6. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  7. V2: ДЕ 6 - Линейные отображения. Определители второго порядка
  8. А. Блага высшего порядка в своем характере благ обусловлены наличием в нашем распоряжении соответственных комплементарных благ.
  9. Адаптивная полиномиальная модель первого порядка
  10. Анализ порядка определения и формирования цены ДР.
  11. Анализ случаев нарушения безопасности движения с установлением виновных и конкретных нарушений правил и порядка работы
  12. Аналитическое выравнивание по параболе второго порядка

Понижение порядка дифференциального уравнения – основной метод решения уравнений высших порядков. Этот метод дает возможность сравнительно легко находить решение, однако, он применим далеко не ко всем уравнениям. Рассмотрим случаи, когда возможно понижение порядка.

1) Уравнения вида y(n) = f(x).

Если f(x) – функция непрерывная на некотором промежутке a < x < b, то решение может быть найдено последовательным интегрированием.

…………………………………………………………….

 

Пример. Решить уравнение с начальными условиями

x0 = 0, y0 = 1,

Решаем с помощью понижения порядка:

.

Подставим начальные условия:

.

Получаем частное решение (решение задачи Коши): .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)