АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Y B X E

Метод наименьших квадратов: алгоритм метода; условия применения.

Для оценки параметров линейной или линеаризованной модели применяется метод наименьших квадратов (МНК). Суть метода состоит в следующем: к реальным данным подбирается функция и её параметры, чтобы разности (отклонения, остатки) между реальными и вычисленными значениями у были минимальны. Но разностей много, поэтому минимизируется сумма квадратов этих разностей:

МНК с Поиском решения можно использовать непосредственно. Для этого надо задать произвольные коэффициенты a и b, построить по ним функцию Ŷ = a + bX, вычислить остатки e = Y – Ŷ и их квадраты, сумму e2.

В окне Поиска решения установить Целевая ячейка ∑e2 минимум, Изменяя ячейки a и b, ограничений нет.

Матричный метод МНКоснован на представлении множеств X, Y, остатков E и параметров линейной модели B в виде векторов, над которыми затем проводятся операции. Векторное представление модели

Y = B * X + E

где

Y B X E

y1 1 x1 e1

y2 1 x2 e2

. a..

. b..

...

yn 1 xn en

 

Эту модель, записанную в векторном виде или в виде системы линейных уравнений, называют схемой Гаусса-Маркова.

Условие МНК S e 2 -> min, или в матричном виде (Y-XB)T(Y-XB) -> min.

Т означает транспонирование, то есть преобразование столбца в строку. Решением является вектор В:

B = (XTX)-1XTY

Здесь -1 означает обращение матрицы. Транспонирование и обращение матриц можно выполнять в Excel, используя функции ТРАНСП и МОБР.

Согласно теореме Гаусса-Маркова, Метод наименьших квадратов, приведённый к линейному преобразованию матриц или к системе линейных уравнений, обеспечивает наилучшую несмещенную, эффективную и сходящуюся к пределу (“состоятельную”) оценку вектора параметров, т.е. наилучшее качество линейной модели, если соблюдаются условия:

  1. Линейная модель соответствует действительности.
  2. Существует дисперсия регрессора.
  3. Математическое ожидание возмущения равно нулю: E(ui) = 0.
  4. Возмущение имеет нормальное распределение.

5. Равенство ожидаемых значений дисперсий возмущений в разных диапазонах Х: E(u2) = Const. Это свойство называется гомоскедастичность, его несоблюдние – гетероскедастичность.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)