|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Спецификация и оценивание МНК эконометрических моделей нелинейных по параметрам. (30) стр.24-25,Для оценки параметров линейной или линеаризованной модели применяется метод наименьших квадратов (МНК). Суть метода: к реальным данным подбирается функция и её параметры, чтобы разности (отклонения, остатки) между реальными и вычисленными значениями у были минимальны. Но разностей много, поэтому минимизируется сумма квадратов этих разностей: Рис.Отклонения реальных у от оценённой функции регрессии Рассмотрим технологию МНК, которая используется ручном вычислении параметров парной линейной регрессии. Сумма квадратов остатков, зависящая от параметров a и b где n – количество измерений. Эта функция достигает минимума в точке, где её частные производные по a и по b равны нулю: an + b S x = S y a S x + b S x2 = S xy Это называется система нормальных уравнений. В ней два уравнения и два неизвестных a и b, а коэффициенты получаются суммированием х, у и т.д. В моделях, нелинейных по параметрам, например степенных или показательных, непосредственное применение МНК для их оценки невозможно, так как необходимым условием применимости МНК является линейность по коэффициентам уравнения регрессии. В данном случае преобразованием, которое приводит уравнение регрессии к линейному виду, является логарифмирование. Логарифмические модели: , где А и β— параметры модели. Прологарифмируем обе части данного уравнения: ln(Y)=ln(A) + β*ln(X) = α+β*ln(X), где α= ln(A) (*). Спецификация, соответствующая (*) называется двойной логарифмической моделью: ln(Y)= α+β*ln(X)+ε, поскольку и эндогенная переменная, и регрессор используются в логарифмической форме. Введем обозначения: . Получаем спецификацию линейной модели, к которой при соответствующем включении случайного возмущения применим МНК. Нелинейный МНК. В общем случае оценка нелинейных по параметрам уравнений выполняется с помощью так называемого нелинейного метода наименьших квадратов (НМНК). Обозначим нелинейное по параметрам уравнение регрессии f(X, ß) (X— матрица рсгрсссоров,ß — вектор параметров). Параметры уравнений в данном методе подбираются таким образом, чтобы максимально приблизить кривую f(X, ß) к результатам наблюдений эндогенной переменной Y. Таким образом, здесь, как и в обычном МНК, минимизируется сумма квадратов отклонений: F= 2 (**) Если продифференцировать F по параметрам и приравнять производные нулю, то получим нелинейную систему нормальных уравнений. В случае линейного уравнения регрессии нормальные уравнения представляли собой систему линейных уравнений, решение которой не составляло труда. Нелинейный метод наименьших квадратов сводится к задаче минимизации функции (**) нескольких переменных ß=(ß1,…,ßn)
7. Классическая парная регресионная модель. Спецификация модели. Теорема Гаусса-Маркова. Простая (парная) регрессия представляет собой модель, где ожидаемое значение зависимой (объясняемой, эндогенной) переменной y рассматривается как функция одной объясняющей (независимой или управляемой, предопределённой) переменной х, то есть модель вида Е(y) =f(x) Регрессионные модели, которые наиболее часто используются в эконометрике: 1) Линейная y = a + bx+u; употребляется наиболее часто, остальные функции стараются преобразовать к линейному виду, линеаризовать. Регрессии, нелинейные относительно включённых в анализ объясняющих переменных: 2) Полином второй, редко третьей степени y = a + bx+сх2+u. 3) Равносторонняя гипербола y = a +b/x +u. Эти модели сводятся к линейным заменой переменных: z = х2 для полинома и z =1/x для гиперболы. К нелинейным регрессиям по оцениваемым параметрам относятся: 4) Степенная y = axbe; 5) Показательная y = abxe; 6) Экспоненциальная y = ea+bxe. Согласно теореме Гаусса-Маркова, Метод наименьших квадратов, приведённый к линейному преобразованию матриц или к системе линейных уравнений, обеспечивает наилучшую несмещенную, эффективную и сходящуюся к пределу (“состоятельную”) оценку вектора параметров, т.е. наилучшее качество линейной модели, если соблюдаются условия (по [ 1 ]):
5. Равенство ожидаемых значений дисперсий возмущений в разных диапазонах Х: E(u2) = Const. Это свойство называется гомоскедастичность, его несоблюдние – гетероскедастичность. Отклонение от гомоскедастичности проверяется по тесту Голдфелда-Квандта GQ = Se12/Se22 где Se12 и Se22 – суммы квадратов остатков (отклонений) в первой и последней трети (или в половинах) диапазона Х; большая сумма делится на меньшую!!!;GQ сравнивают с критерием Фишера для заданных уровня значимости и количества измерений; гипотеза о гомоскедастичности принимается при GQ <4,35. 6. Отсутствие автокорреляции, т.е. взаимозависимости возмущений. Её оценивают, вычисляя статистикуДарбина-Уотсона остатков е: для которой вычислены критические значения при различных уровнях значимости и числе измерений. Приблизительно DW =0…1 означает положительную автокорреляцию, 3…4 отрицательную автокорреляцию, DW =1,5…2,5 позволяет принять гипотезу об отсутствии автокорреляции, DW =1…1,5 и DW =2,5…3 не позволяют принять гипотезу о наличии или отсутствии автокорреляции. Наличие автокорреляции означает, что аппроксимирующая функция подобрана неверно, или же требуется применение других методов и моделей. Автокорреляция разобрана в главе 8. Статистику Дарбина-Уотсона можно вычислить по формуле DW = 2(1-Rавт), где Rавт - коффициент автокорреляции, вычисляемый с помощью функции КОРРЕЛ: задать в окне Массив1 диапазон остатков с номерами 1: n- 1, а в окне Массив2 диапазон 2: n. Понятия “гетероскедастичность” и “автокорреляция” актуальны, если массивы данных упорядочены, что имеет место для временных рядов. “Пространственные” данные можно искусственно упорядочить, например, отсортировав их по возрастанию какой-либо переменной; при этом можно выявить кластеры с аномальной дисперсией остатков, что может означать неоднородность выборки или неадекватность модели. Считается, что гетероскедастичность может привести к снижению эффективности оценок коэффициентов, и надо её искусственно подавлять: делить остатки в таблице 3.3 на их стандартные отклонения в диапазонах, а затем минимизировать сумму их квадратов. Эта технология называется Взвешенный метод наименьших квадратов (ВМНК) и обычно используется в матричном варианте МНК (раздел 3.3). При обнаружении автокорреляции остатков применяется Обобщённый метод наименьших квадратов ОМНК, основанный на преобразовании матриц, но с учётом корреляций остатков.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |