АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Спецификация и оценивание МНК эконометрических моделей нелинейных по параметрам. (30) стр.24-25,

Читайте также:
  1. CBUDSPEC (В. Бюджетная спецификация этапа договора)
  2. CONTRSPU (В. Спецификация потребления)
  3. CTMPINCS (В.Спецификация образца приходного документа)
  4. D - разбиение по двум параметрам.
  5. GOODSPEC (Л. Спецификация)
  6. II.1.2. Сравнительный анализ гуманистической и рационалистической моделей педагогического процесса
  7. INBILLSP (Л. Входящий счёт.Спецификация)
  8. ORDERSP (Л. Спецификация заказа)
  9. PINCOMSP (А. Спецификация прихода)
  10. PRETTOSP (А. Спецификация возврата поставщику)
  11. RPPAYSP (РП. Спецификация расчетов)
  12. ZANKTXSP (ЗП.Сотрудник Налоговая карточка(спецификация))

Для оценки параметров линейной или линеаризованной модели применяется метод наименьших квадратов (МНК). Суть метода: к реальным данным подбирается функция и её параметры, чтобы разности (отклонения, остатки) между реальными и вычисленными значениями у были минимальны. Но разностей много, поэтому минимизируется сумма квадратов этих разностей:

Рис.Отклонения реальных у от оценённой функции регрессии

Рассмотрим технологию МНК, которая используется ручном вычислении параметров парной линейной регрессии.

Сумма квадратов остатков, зависящая от параметров a и b

где n – количество измерений. Эта функция достигает минимума в точке, где её частные производные по a и по b равны нулю:

an + b S x = S y a S x + b S x2 = S xy

Это называется система нормальных уравнений. В ней два уравнения и два неизвестных a и b, а коэффициенты получаются суммированием х, у и т.д.

В моделях, нелинейных по параметрам, например степенных или показательных, непосредственное применение МНК для их оценки невозможно, так как необходимым условием применимости МНК является линейность по коэффициентам уравнения регрессии. В данном случае преобразованием, которое приводит уравнение регрессии к линейному виду, является логарифмирование. Логарифмические модели: , где А и β— параметры модели. Прологарифмируем обе части данного уравнения: ln(Y)=ln(A) + β*ln(X) = α+β*ln(X), где α= ln(A) (*). Спецификация, соответствующая (*) называется двойной логарифмической моделью: ln(Y)= α+β*ln(X)+ε, поскольку и эндогенная переменная, и регрессор используются в логарифмической форме. Введем обозначения: . Получаем спецификацию линейной модели, к которой при соответствующем включении случайного возмущения применим МНК.

Нелинейный МНК. В общем случае оценка нелинейных по параметрам уравнений выполняется с помощью так называемого нелинейного метода наименьших квадратов (НМНК).

Обозначим нелинейное по параметрам уравнение регрессии f(X, ß) (X— матрица рсгрсссоров,ß — вектор параметров). Параметры уравнений в данном методе подбираются таким образом, чтобы максимально приблизить кривую f(X, ß) к результатам наблюдений эндогенной переменной Y. Таким образом, здесь, как и в обычном МНК, минимизируется сумма квадратов отклонений:

F= 2 (**)

Если продифференцировать F по параметрам и приравнять производные нулю, то получим нелинейную систему нормальных уравнений. В случае линейного уравнения регрессии нормальные уравнения представляли собой систему линейных уравнений, решение которой не составляло труда.

Нелинейный метод наименьших квадратов сводится к задаче минимизации функции (**) нескольких переменных ß=(ß1,…,ßn)

 

7. Классическая парная регресионная модель. Спецификация модели. Теорема Гаусса-Маркова.

Простая (парная) регрессия представляет собой модель, где ожидаемое значение зависимой (объясняемой, эндогенной) переменной y рассматривается как функция одной объясняющей (независимой или управляемой, предопределённой) переменной х, то есть модель вида

Е(y) =f(x)

Регрессионные модели, которые наиболее часто используются в эконометрике:

1) Линейная y = a + bx+u; употребляется наиболее часто, остальные функции стараются преобразовать к линейному виду, линеаризовать.

Регрессии, нелинейные относительно включённых в анализ объясняющих переменных:

2) Полином второй, редко третьей степени y = a + bx+сх2+u.

3) Равносторонняя гипербола y = a +b/x +u.

Эти модели сводятся к линейным заменой переменных: z = х2 для полинома и z =1/x для гиперболы.

К нелинейным регрессиям по оцениваемым параметрам относятся:

4) Степенная y = axbe;

5) Показательная y = abxe;

6) Экспоненциальная y = ea+bxe.

Согласно теореме Гаусса-Маркова, Метод наименьших квадратов, приведённый к линейному преобразованию матриц или к системе линейных уравнений, обеспечивает наилучшую несмещенную, эффективную и сходящуюся к пределу (“состоятельную”) оценку вектора параметров, т.е. наилучшее качество линейной модели, если соблюдаются условия (по [ 1 ]):

  1. Линейная модель соответствует действительности.
  2. Существует дисперсия регрессора.
  3. Математическое ожидание возмущения равно нулю: E(ui) = 0.
  4. Возмущение имеет нормальное распределение.

5. Равенство ожидаемых значений дисперсий возмущений в разных диапазонах Х: E(u2) = Const. Это свойство называется гомоскедастичность, его несоблюдние – гетероскедастичность. Отклонение от гомоскедастичности проверяется по тесту Голдфелда-Квандта

GQ = Se12/Se22

где Se12 и Se22 – суммы квадратов остатков (отклонений) в первой и последней трети (или в половинах) диапазона Х; большая сумма делится на меньшую!!!;GQ сравнивают с критерием Фишера для заданных уровня значимости и количества измерений; гипотеза о гомоскедастичности принимается при GQ <4,35.

6. Отсутствие автокорреляции, т.е. взаимозависимости возмущений. Её оценивают, вычисляя статистикуДарбина-Уотсона остатков е:

для которой вычислены критические значения при различных уровнях значимости и числе измерений. Приблизительно DW =0…1 означает положительную автокорреляцию, 3…4 отрицательную автокорреляцию, DW =1,5…2,5 позволяет принять гипотезу об отсутствии автокорреляции, DW =1…1,5 и DW =2,5…3 не позволяют принять гипотезу о наличии или отсутствии автокорреляции. Наличие автокорреляции означает, что аппроксимирующая функция подобрана неверно, или же требуется применение других методов и моделей. Автокорреляция разобрана в главе 8.

Статистику Дарбина-Уотсона можно вычислить по формуле

DW = 2(1-Rавт),

где Rавт - коффициент автокорреляции, вычисляемый с помощью функции КОРРЕЛ: задать в окне Массив1 диапазон остатков с номерами 1: n- 1, а в окне Массив2 диапазон 2: n.

Понятия “гетероскедастичность” и “автокорреляция” актуальны, если массивы данных упорядочены, что имеет место для временных рядов. “Пространственные” данные можно искусственно упорядочить, например, отсортировав их по возрастанию какой-либо переменной; при этом можно выявить кластеры с аномальной дисперсией остатков, что может означать неоднородность выборки или неадекватность модели.

Считается, что гетероскедастичность может привести к снижению эффективности оценок коэффициентов, и надо её искусственно подавлять: делить остатки в таблице 3.3 на их стандартные отклонения в диапазонах, а затем минимизировать сумму их квадратов. Эта технология называется Взвешенный метод наименьших квадратов (ВМНК) и обычно используется в матричном варианте МНК (раздел 3.3). При обнаружении автокорреляции остатков применяется Обобщённый метод наименьших квадратов ОМНК, основанный на преобразовании матриц, но с учётом корреляций остатков.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)