|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Частные коэффициенты детерминацииЧастный коэффициент детерминации показывает, на сколько процентов вариация результативного признака объясняется вариацией первого признака, входящего в множественное уравнение регрессии. Проверка существенности частных коэффициентов детерминации играет важную роль при построении многофакторных регрессионных моделей. Определенный на основе теоретического анализа набор факторных признаков может содержать и такие признаки, которые в данной конкретной совокупности не оказывают существенного влияния на результативный признак. Коэффициенты регрессии при таких несущественных факторах бывают настолько искажены случайными воздействиями и ненадежны, что не имеют никакого реального смысла. К тому же сохранение в уравнении несущественных факторов лишь засоряет модель и может исказить параметры при других переменных и лишить их экономического смысла Частные коэффициенты детерминации, характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включённых в уравнение регрессии. Расчётная формула частного коэффициента детерминации где R2безXi – коэффициент детерминации, вычисленный при исключённом из модели факторе Xi.
45. Спецификация и оценивание МНК нелинейных эконометрических моделей. Довольно часто приходится использовать нелинейные функции регрессии двух видов: 1. Регрессии, нелинейные относительно включённых в анализ объясняющих переменных: Полином второй, редко третьей степени y = a + bx+сх2+u. Гипербола y = a +b/x +u. Эти модели сводятся к линейным заменой переменных: z = х2 для полинома и z =1/x для гиперболы. После этого можно использовать функцию ЛИНЕЙН и сервис Регрессия, выделяя в качестве влияющих переменных х и z для полинома и z для гиперболы. 2. Регрессии, нелинейные по оцениваемым параметрам относятся: Степенная y = axbe; Показательная y = abxe; Экспоненциальная y = ea+bxe. Здесь e =1+ u. Эти модели могут быть линеаризованы логарифмированием, после чего можно использовать функцию ЛИНЕЙН и сервис Регрессия. Например, показательная функция преобразуется в ln(y) =ln(a) +xln(b)+ln(e), или, после переименования z =A+cx+v. После нахождения коэффициентов A и c можно вычислить z ^=A+cx и y^=exp(z^).
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |