Метод наименьших квадратов: алгоритм метода, условия применения
Для оценки параметров линейной или линеаризованной модели применяется метод наименьших квадратов (МНК). Суть метода состоит в следующем: к реальным данным подбирается функция и её параметры, чтобы разности (отклонения, остатки) между реальными и вычисленными значениями у были минимальны. Но разностей много, поэтому минимизируется сумма квадратов этих разностей:
Рис.3.1. Отклонения реальных у от оценённой функции регрессии.
Как правило, вычисления проводятся на компьютере с использованием различных сервисов и программ. Далее мы рассмотрим технологию МНК, которую использовали при ручном вычислении параметров парной линейной регрессии.
Сумма квадратов остатков, зависящая от параметров a и b
где n – количество измерений. Эта функция достигает минимума в точке, где её частные производные по a и по b равны нулю:
или
an + bSx = Sy
aSx + bSx2 =Sxy
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | Поиск по сайту:
|