|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Оценка параметров парной регрессионной модели методом наименьших квадратов. (10)Для оценки параметров линейной или линеаризованной модели применяется метод наименьших квадратов (МНК). Суть метода состоит в следующем: к реальным данным подбирается функция и её параметры, чтобы разности (отклонения, остатки) между реальными и вычисленными значениями у были минимальны. Но разностей много, поэтому минимизируется сумма квадратов этих разностей: Рис.3.1. Отклонения реальных у от оценённой функции регрессии.
Как правило, вычисления проводятся на компьютере с использованием различных сервисов и программ. Далее мы рассмотрим технологию МНК, которую использовали при ручном вычислении параметров парной линейной регрессии. Сумма квадратов остатков, зависящая от параметров a и b
где n – количество измерений. Эта функция достигает минимума в точке, где её частные производные по a и по b равны нулю:
или an + bSx = Sy aSx + bSx2 =Sxy Это называется система нормальных уравнений. В ней два уравнения и два неизвестных a и b, а коэффициенты получаются суммированием х, у и т.д. Решать её можно разными способами. В данном случае использован сервис Excel Поиск решения для настройки линейной модели по данным X и Y, представленным в Таблице 3.1. Коэффициенты системы нормальных уравнений расположены в виде матрицы (верхние строки таблицы 3.2), неизвестные a и b задаются произвольно и умножаются на коэффициенты (нижние строки). В окне Поиска решения задаются: Целевая ячейка – первая сумма, Значение равно 247 (Sy), Изменяя ячейки – a и b, Ограничения: вторая сумма равна 3901 (Sxy). Исходные данные X и Y приведены в Таблице 3.1. результаты расчёта в Таблице 3.2. Таблица 3.1. Таблица 3.2.
Теперь можно построить функцию регрессии Ŷ, сравнить её с Y и использовать для прогноза. В принципе, МНК с Поиском решения можно использовать непосредственно. Для этого надо задать произвольные коэффициенты a и b, построить по ним функцию Ŷ = a + bX, вычислить остатки e = Y – Ŷ и их квадраты, сумму e 2. В окне Поиска решения установить Целевая ячейка Se2 минимум, Изменяя ячейки a и b, ограничений нет. Таблица 3.3. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |