|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ТЕМА 1. ПРЕДМЕТ ЛОГИКИ КАК НАУКИЛекция 1. Предмет логики как науки Основные понятия: Схема (логическая форма) рассуждения; логическая константа; формальная логика; логический закон; выполнимая схема рассуждения; противоречивая схема рассуждения; правильность; истинность; содержательная ошибка; формальная ошибка (паралогизм, софизм); логическая культура.
Определение логики как науки. Понятие схемы Хотя логика (от греч. logos – слово, понятие, рассуждение, разум) как наука существует около двух с половиной тысяч лет – ее основателем считается великий древнегреческий мыслитель Аристотель (384-322 до н.э.), - в настоящее время нет общепринятого определения этой научной дисциплины. Иногда под логикой понимают науку, которая исследует структуры мышления и раскрывает лежащие в его основе закономерности движения к истине. Мы же термин «логика» будем употреблять в более узком значении и рассматривать логику как науку о схемах (логических формах) правильного рассуждения. При этом под рассуждением будем понимать переход от одних мыслей к другим относительно одного и того же предмета. В только что принятом нами определении логики встречаются, видимо, неизвестные читателю выражения, которые, естественно, вызывают вопросы: «Что такое схема, или логическая форма, рассуждения (или, в более широком плане, - мысли)?» «Какое рассуждение называется правильным?» Для ответа на первый вопрос рассмотрим некоторые примеры. Возьмем такие выражения: «Все квадраты - прямоугольники»; «Все металлы - проводники электричества»; «Все бизнесмены - налогоплательщики». Нетрудно видеть, что по своему конкретному содержанию мысли, фиксируемые этими выражениями, различны. Они относятся к разным областям знания - геометрии, физике, экономической теории. Тем не менее, эти мысли имеют общие черты: ими зафиксированы какие-то объекты (квадраты, металлы, бизнесмены), принадлежащие этим объектам признаки (то, что они прямоугольники, проводники электричества или налогоплательщики), и выражены эти мысли с помощью одинаково расположенных слов «все» и «суть» (последнее заменено тире). Стало быть, общее характеризуется не конкретным содержанием мыслей, а схемой, способом их построения. Традиционно для обозначения объектов и их признаков используются соответственно буквы S и Р (начальные буквы латинских слов «субъект» (лат. subjectum – подлежащее) и «предикат» (лат. praedicatum –сказуемое). Тогда получается схема: Все S суть Р Вторая группа выражений: «Если треугольник равносторонний, то он равнобедренный»; «Если по проводнику течет электрический ток, то вокруг проводника образуется электромагнитное поле»; «Если в обществе есть классы, то в нем есть государство». От первых предложений они отличаются тем, что являются сложными. Все они образованы с помощью союза «если, то». Можно сказать так: постоянно употребляемый союз «если, то» используется для соединения трех различных понятий. Введя вместо них соответственно переменные р и q, получим схему: Если р, то q Теперь обратимся к более сложным примерам: «Если треугольник равносторонний, то он равнобедренный, следовательно, если треугольник не равнобедренный, то он не равносторонний»; «Если по проводнику течет электрический ток, то вокруг проводника образуется электромагнитное поле, следовательно, если вокруг проводника не образуется электромагнитное поле, то по проводнику не течет электрический ток»; «Если в обществе есть классы, то в нем есть государство; следовательно, если в обществе нет государства, то в нем нет классов». Общее здесь характеризуется тем, что путем преобразования одних мыслей получаются какие-то новые мысли, новые знания. Это достигается с помощью схемы: Если р, то q; следовательно, если не - q, то не - р Можно приводить и другие примеры. Мы убедимся, что схемы, или логические формы рассуждений весьма разнообразны, их очень много, даже бесконечно много. Обобщенно их суть может быть выражена следующим определением: схема (логическая форма) рассуждения – это та его сторона, которая не зависит от конкретного содержания, но служит для связи и упорядочения его элементов. В языке логическая форма фиксируется с помощью переменных (в рассмотренных случаях - это S, Р; р, q), а также логических констант. Логическая константа – это выражение, сохраняющее свое значение в любом рассуждении. В качестве логических констант в русском языке выступают слова «все», «некоторые», «суть», «и», «или», «либо, либо», «если, то», «тогда и только тогда, когда», «необходимо», «возможно» и др. Поскольку логика (в узком смысле) имеет дело с логическими формами, постольку ее называют формальной логикой. Упражнения: Используя переменные p и q, установите, какие из следующих предложений имеют одинаковую логическую форму: 1. Иванов выиграл шахматный турнир и стал чемпионом. 2. Неверно, что столица Беларуси не расположена на Свислочи. 3. Если четырехугольник – параллелограмм, то его диагонали, пересекаясь, делятся пополам. 4. Неверно, что товар не имеет стоимости. 5. Если a2 не равно b 2, то a не равно b. 6. Мой друг с отличием окончил институт и получил диплом экономиста. 7. Если a равно b, то a 2 равно b 2. 8. Если диагонали четырехугольника, пересекаясь, не делятся пополам, то этот четырехугольник не параллелограмм. Используя переменные S и P, установите, какие из следующих высказываний имеют одинаковую логическую форму: 1. Все элементы первой группы таблицы Менделеева – щелочные металлы. 2. Некоторые ученые – альпинисты. 3. Ни один студент нашей группы не имеет академической задолженности. 4. Все рабовладельцы - эксплуататоры. 5. Никто из присутствующих не знает его. 6. Некоторые жидкости – электропроводные вещества. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |