|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Отношение следования (подчинения)Вывести следствие из некоторых положений – значит изъять из них какую-то часть их содержания. Если исходное содержание является истинным, то и следствие также истинно. Из ложного содержания можно получить как ложное, так и истинное содержание. Поэтому отношение следования в логике высказываний можно определить так: логические схемы a и b находятся в отношении следования (из a следует b), если и только если при одинаковых значениях переменных не бывает так, что схема a получает значение «истинно», а схема b получает значение «ложно». В качестве примера возьмем схемы высказываний: “Если электростанция прекратит подачу тока, то предприятие остановится, а если оно остановится, то понесет большие убытки” и “Если электростанция прекратит подачу тока, то предприятие понесет большие убытки”. Сопоставим эти схемы – (A ® B) Ù (B ® C) и (A ® C) - табличным способом (таблица 8). Таблица 8
Первая схема получает значение «истинно» в четырех случаях (см. строки 1-ю, 4-ю, 6-ю, 8-ю). Но в этих же случаях значение «истинно» получает и вторая схема, и нет такого случая, чтобы высказывание первой схемы было истинным, а второй - ложным. Следовательно, из первой схемы следует вторая, соответственно, из первого высказывания следует второе высказывание. Отношение полной совместимости (равнозначности) Схемы a и b находятся в отношении полной совместимости, или равнозначности, если и только из схемы a следует схема b, и наоборот; иными словами, в этом случае при одинаковых значениях переменных схемы a и b принимают одинаковые логические значения, и их таблицы истинности полностью совпадают. Например, в отношении полной совместимости находятся схемы высказываний “Если товарное производство расширяется, то натуральное хозяйство разлагается” и “если натуральное хозяйство не разлагается, то товарное производство не расширяется” (таблица 9). Таблица 9
Если отношении равнозначности обозначить знаком Û, то верны по крайней мере следующие утверждения: (1) Ø(A Ù B) ÛØ A Ú Ø B; (2) Ø(A Ú B) Û Ø A Ù Ø B; (3) A Ú B Û (A Ù Ø B) Ú (Ø A Ù B); (4) A ® B ÛØ B ® Ø A; (5) A ® B Û Ø(A Ù Ø B); (6) Ø(A ® B) Û A ÙØ B; (7) A ® B ÛØ A Ú B; (8) A «B Û (A ® B)Ù(B ® A); (9) Ø(A «B) Û A Ú B; (10) A Û ØØ A; (11) A Û A Ù(A Ú B); (12) A Û (A Ú B)Ù(A ÚØ B); (13) A Û (A Ù B)Ú(A ÙØ B); (14) (A Ú C) Ù (B Ú Ø C) Û (A Ú C)Ù(B Ú Ø C)Ù(A Ú B); (15) (A Ù C) Ú (B Ù Ø C) Û (A Ù C)Ú(B ÙØ C)Ú A Ù B); (16) A Ù A Û A; (17) A Ú A Û A; (18) A ÙØ A Û л; (19) A ÚØ A Û и; (20) A Ù (B Ù C) Û (A Ù B)Ù C; (21) A Ú (B Ú C) Û (A Ú B) Ú C.
Отношение равнозначности позволяет без ущерба для истинности некоторого текста взаимозаменять высказывания соответствующих схем (для этого пригодны все названные случаи равнозначности), устранять избыточную информацию (случаи (10) – (13), (16) – (19)), выделять новые схемы, если это нужно для познавательных целей (случаи (12)-(15)). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |