АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Практическое задание N 2. 22

Читайте также:
  1. Window(x1, y1, x2, y2); Задание окна на экране.
  2. В основной части решается практическое задание.
  3. Глава 1. Первое практическое занятие по методу ПМТ
  4. Домашнее задание
  5. Домашнее задание
  6. Домашнее задание
  7. Домашнее задание
  8. Домашнее задание
  9. Домашнее задание
  10. Домашнее задание
  11. Домашнее задание
  12. Домашнее задание

 

Рассчитать разностным моделированием и по аналитической зависимости траектории точки. Параметр a = 10, b = 5, 0<= t <=4*pi, N=500. Построить траектории точки.

 
 


N X1 Y1 Vx1 Vy1 Axi Ayi X(t) Y(t)

 
 


1 0 0 0 b 2*a -y a*t2 b*sin(t)

2 0 0 a b 0 -y a*t b*sin(t)

3 1 0 1 1 -2*y 2*x et* cos(t) et*sin(t)

4 a 0 0 0 -x x*b/a a* cos(t) b*(1-cos(t))

5 a b 0 0 -4*x y a* cos(2*t) b*cos(t)

6 0 0 0 b 2*a 0 a*t2 b*t

7 2*a 0 0 a x 0 a*(et + e-t) a*t

8 0 b a 0 -x -y a* sin(t) b*cos(t)

 

Y V F, * V0 g fi 0 X

 

Рассмотрим задачу расчета траектории снаряда, движущегося с начальной скоростью "V0" под углом "fi" к горизонту с учетом сил сопротивления воздуха, пропорциональных скорости снаряда. Проекции ускорений определим в виде функций:

 

FUNCTION Fx(Vx, kc: real): real; begin Fx:= - kc*Vx end;

FUNCTION Fy(Vy, kc: real): real; begin Fy:= - kc*Vy - g end;

 

Где kc - коэффициент сопротивления воздуха,

g = 9. 81, м/с - ускорение свободного падения у поверхности Земли.

Поскольку время подлета снаряда к цели неизвестно, то параметр "dt" выбирается приближенно, например, исходя из максимального времени полета снаряда над горизонтальной поверхностью без учета сопротивления воздуха: tмах= 2*V*sin(fi)/g. Для N = 500, dt = t/500. При решении конкретных задач процесс расчета прекращается при достижении снарядом цели, либо при ограничениях по статическим координатам, например:

i:= 1;

REPEAT i:=i+1;

{операторы расчета массивов скорости, ускорения и координат точки }

Until (cc = GetPixel_G(X[i], Y[i])) or (Y[i] < 0) or (i = N);

 

Здесь cc - цвет пикселов цели, Y[i] < 0 - ограничение по горизонтальной поверхности, i = N - ограничение по размеру массива. В случае преждевременного завершения полета снаряда необходимо увеличить dt или параметр N.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)