АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Численный расчет интегралов

Читайте также:
  1. I. Расчет накопительной части трудовой пенсии.
  2. I. Расчет производительности технологической линии
  3. I. Расчет размера страховой части трудовой пенсии.
  4. II. Расчетная часть задания
  5. Абсолютная и условная сходимость несобственных интегралов.
  6. Аккредитивная форма расчетов
  7. АКТИВНО-ПАССИВНЫЕ СЧЕТА РАСЧЕТОВ
  8. Алгоритм расчета
  9. Алгоритм расчета дисперсионных характеристик плоского трехслойного оптического волновода
  10. Алгоритм расчета температуры горения
  11. Амортизация как целевой механизм возмещения износа. Методы расчета амортизационных отчислений.
  12. Аналитический метод расчета

 

 

Вычисление определенного интеграла исторически обусловлено задачей расчета площадей различных фигур. Согласно “теореме о среднем” определенный интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке "xi" этого отрезка:

b f(xi)

S = ò f(x)*dx =(b-a)*f(xi); a <= xi <= b,

a

a xi b

где a и b - верхний и нижний пределы интегрирования.

Таким образом, определенный интеграл равен площади прямоугольника с основанием длиной "b-a" и высотой "f(xi)". Здесь значение xi, а значит и f(xi) неизвестно. Однако, если отрезок интегрирования разбить на много малых отрезков "dxi", в которых значение функции f(xi) можно принять постоянным, то

b

S = ò f(x)*dx = f(x1)*dx1 + f(x2)*dx2 + f(x3)*dx3 +... + f(xN)*dxN;

a

 

где dx1 + dx2 + dx3 +... + dxN = b - a;

 

Вычисление определенного интеграла по приведенной выше формуле называется численным интегрированием. Численное интегрирование применяют при решении различных задач, например: при определении площадей сложных геометрических фигур, определении работы сил, расчете длины траектории точки и в других случаях, когда подынтегральная функция "f(x)"задана по точкам, имеет сложное аналитическое выражение или ее первообразная не определяется аналитически. Сущность численных методов интегрирования состоит в различной замене (интерполяции) сложной подынтегральной функции на малых отрезках простой функцией, либо в представлении подынтегральной функции в виде сходящегося бесконечного ряда.

Рассмотрим методы численного интегрирования, основанные на интерполяции подынтегральной функции на малых отрезках равной длины различными видами функций: постоянной, линейной, квадратичной и кубической. Формулы численного интегрирования, получаемые при различных интерполяциях подынтегральной функции, называются квадратурными.

При равномерном разбиении отрезка [a, b] на "N" малых отрезков (интервалов) необходимо определять значения функции "f(xi)" в "M" точках внутри отрезка [a, b].

 

Метод прямоугольников основан на интерполяции функции на малом отрезке постоянным значением. Кривую f(x) на каждом малом интервале "h" заменяют горизонтальной линией, пересекающей кривую в середине отрезка, при этом M=N. Интеграл вычисляется по формуле:

 

S1 = f1 * h; - на одном отрезке.

S =(f1 + f2 +... + fM)*h; - на M отрезках.

 

Здесь fi = f(xi); h = (b-a)/N; xi = a - h/2 + h*i; i = 1, 2,...,

 

 

Y Y Y Y

f (x) f (x) f (x) f(x)

               
 
     
       
 
 

 

 


a x1 x2 x3 b X a x1 x2 b X a x1 x2 x3 b X a x1 x2 x3 x4 x5 b X

 

Метод трапеций состоит в том, что кривую f(x) на каждом малом интервале "h" заменяют отрезком прямой, соединяющим точки кривой f(x) на краях этого интервала, при этом M=N-1. Интеграл вычисляется по формуле:

 

S1 =((fa + fb)/2)* h; - на одном отрезке.

S = ((fa + fb)/2 + f1 + f2 +... + fM)*h; - на N отрезках.

Здесь fi = f(xi); h = (b-a)/N; xi = a + h*i; i = 1, 2,..., M.

 

Метод Симпсона основан на интерполяции функции на малом отрезке квадратичной параболой, проходящей через крайние и среднюю точки кривой f(x). При этом M=2*N-1, а интеграл вычисляется по формуле:

 

S1 =((fa + 4*f1 + fb)/3)* h - на одном отрезке.

S=(fa+fb+ 2*(f2+f4+...+fM-2)+ 4*(f1+f3+...+fM-1))*h/3; - на N отрезках.

Здесь fi = f(xi); h = (b-a)/(2*N); xi = a + h*i; i = 1, 2,..., M.

 

Метод "трех восьмых" основан на интерполяции функции на малом отрезке кубической параболой, проходящей через крайние и две равноотстоящие по "x" точки кривой f(x). При этом M=3*N-1, а интеграл вычисляется по формуле:

 

S1 =((fa + 3*(f1+f2) + fb)*3/8)* h - на одном отрезке.

S = (fa+fb+ 2*(f3+f6+...+fM-3)+ 3*(f1+f2+...+fM-1))*3*h/8; - на N отрезках.

Здесь fi = f(xi); h = (b-a)/(3*N); xi = a + h*i; i = 1, 2,..., M.

Операторы для вычисления интеграла в этом случае имеют вид:

 

m:= 3*n-1; h:= (b-a)/(3*n); s:= f(a) + f(b);

for i:=1 to m do begin

x:= a+h*i; if i mod 3 = 0 then S:= S+2*f(x) else S:= S+3*f(x)

end;

S:= 3/8*S*h;

Отметим, что методы прямоугольников и трапеций точны для многочленов первой степени, формулы Симпсона и "трех восьмых" - для многочленов третьей степени.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)