АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение прямой на плоскости

Читайте также:
  1. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  2. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  3. В отделение проктологии поступил больной с жалобами на кровотечение из стенок прямой кишки.
  4. Векторы на плоскости
  5. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  6. Волна вероятности. Уравнение Шредингера
  7. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  8. Вопрос 1 Корреляционные функции и спектральные плоскости.
  9. Вопрос 43. Расчет времени начала снижения при заходе на посадку с прямой
  10. Вопрос27 Полярная и декартова системы координат на плоскости. Связь между полярными и декартовым системами координат. Цилиндрические и сферические системы координат на плоскости.
  11. Восприятие точки, линии, пятна на плоскости
  12. ВОСПРИЯТИЕ ФОРМЫ НА ПЛОСКОСТИ

 

 

При решении различных задач конструирования используются графические редакторы и специальные программы автоматизированного конструирования. С помощью таких программ можно рисовать на экране различные рисунки, эскизы деталей. В программах графического редактора используются формулы из аналитической геометрии на плоскости и в пространстве. Приведем уравнения, позволяющие строить простейшие фигуры на плоскости. Пусть на плоскости задана правая прямоугольная система координат XoY.

Уравнение прямой, проходящей через две точки "1" и "2":

Y y2 * (Xt, Yt)   y1 alf
 
 


0 x1 x2 X

 

y = F(x) = D*(x-x1)+y1; или y = D*x+D1;

 

где D = tg(alf) = (y2-y1)/(x2-x1); D1=y1-D*x1;

 

Уравнение прямой в общем виде:

 

F(x,y) = A*x + B*y + C = 0;

 

где A= y2-y1; B=-(x2-x1); C= -A*x1 - B*y1;

 

Рассмотрим задачи, связанные с определением принадлежности точки с координатами (Xt, Yt) области, ограниченной заданной прямой Y=F(x).

При Yt > Y = F(Xt) получаем:

 

Yt > D*(Xt-x1)+y1; или F(x,y)= A*Xt + B*Yt + Ci > 0; где (B > 0)

 

- неравенства, определяющие область точек (Xt, Yt), лежащих выше прямой Y=Fi(x).

Для прямой, параллельной оси "Y" при Xt>x1 - точки лежат правее прямой x=x1.

 

 

Приведем неравенства, определяющие область точек (Xt, Yt) фигур:

a) прямоугольник: |Yt|<b and |Xt|<a; площадь S=4*a*b;

b) ромб: a*|Yt|+b*|Xt|<a*b; площадь S=2*a*b;

c) параллелограмм: |Yt|<b and (c-a)*Yt-b*(a+c)<2*b*Xt<(c-a)*Yt+b*(a+c);

площадь S=2*b*(a+c);

 

b

 

-a a

-b

 

 

Рассмотрим область треугольника, заданного координатами трех вершин:

1 - (x1, y1), 2 - (x2, y2), 3 - (x3, y3). Площадь треугольника:

 

S = 0. 5*abs((x1-x2)*(y1+y2)+(x2-x3)*(y2+y3)+(x3-x1)*(y3+y1))

 

Пусть прямая F1(x,y)=0 проходит через точки 1 и 2. Точка (Xt, Yt), лежащая внутри треугольника находится с той же стороны, что и точка 3, тогда неравенства для обоих точек имеют одинаковый знак, т. е. их произведение положительно:

2     1 * (Xt, Yt)      

 

F1(Xt,Yt)* F1(x3,y3) > 0

 

Аналогично для других сторон треугольника, получаем:

 

F2(Xt,Yt)* F2(x1,y1) > 0

F3(Xt,Yt)* F3(x2,y2) > 0


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)