|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Один корень несколько корней1 x3 - 4*x2 - x + 1 0... 1 -2... 6 2 2*x3 - 6*x2 - x - 1 -1... 0 -1... 4 3 x - 2 + 4*SIN(x) 0... 1 0... 7 4 x2 - LN(1+x) - 3 -0.9... 1 -0.9... 3
В общем случае уравнение F(x) = 0 решается итерационными методами.
Метод итераций (повторений) основан на расчете значения переменной по рекуррентным формулам. Общая итерационная формула имеет вид:
xi = Fi(xi-1); где i = 1, 2,..., m; x0 - начальное приближение.
Для сходимости итерационной схемы должно выполняться условие: |dFi(x)/dx|< 1; В случае линейной итерационной схемы xi = xi-1 - Ki-1*F(xi-1); Коэффициент Ki-1 зависит от выбранной схемы и может существенно повлиять на количество итераций, необходимых для получения решения с заданной точностью. Получим итерационную формулу для расчета корня из числа "a", т. е. x= Öa;
(x- Öa)2 = x2 - 2*x* Öa + a =0; откуда Öa = (x + a/x)/2; где a > 0.
полагая Öa = xi; и x = xi-1; получаем: xi = (xi-1 + a/xi-1)/2; n В более общем виде для x = Ö a; xi = ((n-1)*xi-1 + a/(xi-1)(n-1))/n; Практическое задание N 2. 29 Составить функцию 1_1. Итерационного расчета корня n-ой степени из положительного числа "a". 1_2. Итерационного расчета корня уравнения: x= Ln(A+x); при x>0; A>1; 1_3. Итерационного расчета корня уравнения: x= Arctg(x); при x<>0;
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |