АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Оптика и свет

Читайте также:
  1. ВОЛНОВАЯ ОПТИКА
  2. Волновая оптика.
  3. ГЕОМЕТРИЧЕСКАЯ И ВОЛНОВАЯ ОПТИКА
  4. Геометрическая оптика
  5. Геометрическая оптика. Разрешающая сила оптических систем
  6. Геометрическая оптика.отражение и преломление света. законы отражения и преломления.Зеркала и линзы.Уравнения для зеркал и линз.оптические приборы.
  7. ГЛАВА 17. ВОЛНОВАЯ ОПТИКА
  8. Задание №2. Оптика.
  9. ОПТИКА И КВАНТОВАЯ ФИЗИКА
  10. Тема 8. Фотографічна оптика
  11. Экспериментальное задание по теме «Оптика»: наблюдение изменения энергии отраженного и преломленного лучей света

 

 

Геометрическая оптика. Задачи оптики связаны с графическими построениями падающих, преломленных и отраженных лучей.

Рассмотрим задачу построения траектории преломленных и отраженных лучей при прохождении границы раздела двух прозрачных сред. Углом падения называют угол, образованный лучом и нормалью к поверхности в точке падения. Согласно закону отражения света угол падения луча равен углу отражения. Углом преломления называют угол, образованный лучом, прошедшим через границу раздела двух сред, и нормалью к поверхности в точке падения. Согласно закону преломления света проходящего из среды с показателем преломления n1 в среду с показателем преломления n2 зависимость между углом падения fi1 и углом преломления fi2 имеет вид:

 
 


Y

n1

 
 


fi2

 

X

fi1

 

n2

(X0, Y0)

 

sin(fi2)/sin(fi1)=n1/n2.

 

В случае расположения источника в более плотной среде n1>n2, при угле падения луча большем, чем fip=arcsin(n2/n1) происходит полное отражение луча. В случае расположения источника в менее плотной среде n1<n2 существует оптимальный угол падения луча fio=arctg(n1/n2) при котором потери отраженной и поглощенной энергии наименьшие.

Пусть источник света расположен в среде с n1>n2, а граница раздела сред проходит по оси "Х". Алгоритм построения траектории луча следующий:

1) Задаем координаты и угол выхода луча x0, y0, fi1. Вычисляем fip с использованием формулы: arcsin(x)=arctg(x/Ö(1-x2)).

 

2) Определяем проекции падающего луча: fx1=abs(y0)*tg(fi1); fy1=abs(y0); и строим вектор из т. (x0, y0) в т. (x1=x0+fx1, y1=0).

3) Если fi1<fip, то вычисляем угол преломления fi2, проекции преломленного луча: fx2=abs(y0)*tg(fi2); fy2=abs(y0); и строим вектор из т. (x1, y1) в т. (x2=x1 + fx2, y2=fy2).

4) Определяем проекции отраженного луча: fx3=abs(y0)*tg(fi1); fy3=-abs(y0); и строим вектор из т. (x1, y1) в т. (x3=x1+fx3, y3=fy3).

 

 

Рассмотрим задачу построения траекторий преломленных лучей, проходящих через прозрачную трехгранную призму. Известно, что луч белого цвета разлагается на составляющие цвета из-за разности коэффициента преломления для монохромных лучей, поскольку длина волны зависит от плотности среды.

Например, для стекла - тяжелый флинт: Y 4

2

3

Цвет Красный Желтый Зеленый Синий Фиолетовый

       
   
 
 


"n2" 1, 644 1, 650 1, 66 1, 68 1, 685 1 n1

n2

0 X

Луч, выходящий из источника света под углом "al1" к оси "Х" падает на первую грань призмы под углом "fi1". Преломленный луч падает на вторую грань призмы под углом "fi3" и выходит под углом "al4" к оси "Х".

Алгоритм построения луча, проходящего через призму:

1) Строим призму при заданных углах "fp1", "fp2" и высоте "h" треугольника,

2) Определяем точку "2": y2=K*h; x2= K*a1; где 0<K<1; a1=h/tg(fp1);

3) Определяем точку "1": x1=x2-L*cos(al1); y1= y2-L*sin(al1); из которой в точку “2” проводим вектор заданной длины "L" под заданным углом al1.

4) Определяем угол падения луча: fi1=Pi/2+al1-fp1; угол преломления луча: fi2:=arcsin(sin(fi1)*n1/n2) и угол наклона луча к оси "Х": al2=al1+fi2-fi1.

5) Решая совместно уравнение для луча и стороны треугольника, определяем точку "3": x3= (x2*tg(al2)+a*tg(fp2)-y2)/(tg(al2)+tg(fp2)); y3:= (a-x3)*tg(fp2); где a= a1+a2; a2=h/tg(fp2); к которой проводим из т. "2" вектор.

6) Определяем угол падения луча: fi3= Pi/2-al2-fp2; угол преломления луча: fi4:=arcsin(sin(fi3)*n2/n1) и угол наклона луча к оси "Х": al4=al2+fi3-fi4.

7) Строим луч, выходящий из т. "3" в т. "4": x4=x3+L*cos(al4); y4=y3+L*sin(al4).

 

 

Рассмотрим задачу построения траектории лучей при отражении от параболического зеркала. Парабола описывается уравнением Y2 = 2*P*X, где X - ось параболы. Фокус параболы находится в точке Xf = P/2, Yf = 0. Приведем алгоритм построения отраженного луча, падающего на параболическое зеркало параллельно оси "X". Известно, что в этом случае отраженные лучи проходят через фокус.

1) В диапазоне 0<=X<=X_Max строим параболу Y = ± Ö (2*P*X).

2) Выбираем некоторую точку на параболе с координатами 0 < Xp < X_Max, Yp= Ö(2*P*Xp). 3) Строим падающий луч - вектор с началом в точке X1=X_Max, Y1=Yp и концом в точке Xp, Yp. Строим отраженный луч - вектор с началом в точке Xp, Yp и концом в точке Y2=0, X2=Xp-Yp/tg(2*fi). Где fi - угол наклона касательной к параболе в точке падения луча. Tg(fi)=P/Yp, Tg(2*fi)=2*Tg(fi)/(1-Tg2(fi)).

 

Y Y

(Xp,Yp) 2

* (X1, Y1) 1

       
   
 
 


(Y2, X2) X_max X

 
 


*

 

Рассмотрим задачу построения траектории лучей при отражении от цилиндрического зеркала в поперечном сечении. Пусть луч выходит из источника с координатами (r1, f1) под углом a1 к оси "X". Радиус зеркала R. После отражения от поверхности в т. "2" луч приходит в т. "3". Обозначим b - угол падения луча в точке "2", f2 - угол с осью "X" радиуса-вектора т. "2". Очевидно, что R*sin(f2-a1)=r1*sin(f1-a1), b=f2-a1; - постоянная величина, f3=f2+2*b+Pi - рекуррентная зависимость. Для расчета координат в точке "i" запишем:

 

fi = fi-1 +2*b+Pi; xi = R*cos(fi); yi = R*sin(fi); i = 3, 4,...

 

Алгоритм расчета траектории луча следующий:

1) Задаем R, r1, f1, a1 и вычисляем x1=r1*cos(f1), y1=r1*sin(f1).

2) Рисуем окружность радиуса R и вычисляем f2= a1+ arcsin(r1/R*sin(f1-a1)).

3) В цикле (до нажатия клавиши) вычисляем: x2=R*cos(f2), y2=R*sin(f2); рисуем вектор из т. "1" в т. "2", присваиваем: x1=x2, y1=y2, f2=f2+2*b+Pi;

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.)