АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Соединения кремния

Читайте также:
  1. Важнейшие соединения: оксиды, гидроксиды, соли, - их представители и их значение в природе и жизни человека.
  2. Валентности и степени окисления атомов в некоторых соединениях
  3. Взаимосогласованные договоры и договоры присоединения.
  4. Виды соединения проводников.
  5. Глава 9. Комплексные соединения
  6. Дать характеристику одного из элементов - неметаллов (хлора, серы, фосфора, азота, углерода, кремния) (все по выбору).
  7. Диаграмма состояния для сплавов, образующих химические соединения
  8. Завершение присоединения Казахстана к Российской империи
  9. Загрязнение антибиотиками, гормонами, другими веществами и соединениями, применяемыми в животноводстве.
  10. Заклёпочные соединения
  11. Изготовление двухсторонних печатных плат с переходными соединениями
  12. Ингибиторы – это соединения Z, которые взаимодействуют с образовавшимися радикалами и образуют такие продукты, которые не способны далее продолжать рост цепи.

Соединения со степенью окисления –4. Степень окисления –4 для кремния реализуется только в бинарных соединениях с активными металлами - силицидах. Получают силициды непосредственным взаимодействием кремния с металлами (700-1200 ºС) или при нагревании смеси соответствующих оксидов и кремния в инертной атмосфере:

 

6MnO + 5Si = 6Mn3Si + 3SiO2

Силициды переходных металлов являются бертоллидами, они устойчивы к действию кислот и окислителей. Их применяют для получения жаростойких и кислотоупорных сплавов и в качестве высокотемпературных полупроводниковых материалов. Ряд силицидов f-элементов применяют в атомной энергетике в качестве поглотителя нейтронов.

Силициды непереходных металлов гидролитически неустойчивы, легко разлагаются водой и кислотами:

Mg2Si + 4HCl = 2MgCl2 + SiH4­

Соединения со степенью окисления +2. Из соединений кремния(II) известен только оксид - SiO, полученный взаимодействием кремния с его диоксидом при высоких температурах:

t

Si + SiO2 = 2SiO

 

Это коричневый порошок, при 1200 ºС возгоняется, химически активен – восстановитель, несолеобразующий оксид.

Соединения со степенью окисления +4. Соединения кремния(IV) наиболее многочисленны. Их типичными представителями являются SiHal4, SiO2, SiS2, Si3N4, SiC.

Гидриды кремния (силаны) получаются косвенным путем при разложении силицидов кислотами. В обычных условиях моно- и дисиланы (SiH4, Si2H6) газообразны, трисилан – жидкость, высшие представители гомологического ряда – твердые вещества. Связи Si-Si и Si-Н менее прочные по сравнению с аналогичными связями углерода, поэтому соединения кремния с водородом нестойки, ядовиты, на воздухе самопроизвольно воспламеняются, при рН > 7 окисляются водой.

 

SiH4 + 2O2 = SiO2 + 2H2O; SiH4 + 4H2O = H4SiO4 + 4H2

ортокремниевая кислота

 

Поскольку sp2- и sp-типы гибридизации для атома кремния не характерны, гидриды с двойными и тройными связями (аналоги этилена и ацетилена) неизвестны.

Как уже отмечалось, в отличие от углерода, кремний не образует устойчивых гомоцепей. Но чередование атомов кремния с атомами кислорода приводит к образованию очень устойчивых соединений - мономерного и полимерного строения (силоксанов):

 

гексаметилдисилоксан силиконы

Полимерные силоксаны - силиконы - термостойки, устойчивы к окислению и гидрофобны. Некоторые силиконы растворяют до 20% кислорода, что позволяет использовать их в медицине при лечении легочных заболеваний.

Диоксид кремния - SiO2 - кристаллическое вещество полимерного строения. Очень твердое и химически устойчивое, имеет низкий коэффициент температурного расширения, что позволяет использовать его для производства термостойкого стекла. Кварцевое стекло прозрачно для ультрафиолетового излучения и выдерживает большие перепады температур.

По химическим свойствам SiO2 кислотный оксид, но с водой не реагирует. Растворяется в растворах щелочей при нагревании:

t

SiO2 + 2KOH = K2SiO3 + H2O

Легко реагирует со фтором, фтороводородном и его водными растворами:

SiO2 + 2F2 = SiF4 + O2; SiO2 + 6HF = H2SiF6 + 2H2O

гексафторокремниевая кислота

Кремний образует ряд кремниевых кислот, большинство из которых известно только по их солям - силикатам. В качестве индивидуальных веществ описаны ортокремниевая кислота - H4SiO4 и метакремниевая кислота - H2SiO3. Ортокремниевая кислота получается в виде водного раствора при гидролизе некоторых соединений кремния, например, его сульфида:

 

SiS2 + 4H2O = H4SiO4 + 2H2S

Полученное вещество неустойчиво и при длительном хранении раствора полимеризуется. Ортокремниевая кислота растворима в воде, слабая двухосновная кислота (К1 = 2 10-10; К2 = 2 10-12), легко полимеризуется.

 

диортокремниевая кислота

тетраортокремниевая кислота тетраметакремниевая кислота

 

Метакремниевая кислота H2SiO3 образуется в виде золя или геля при действии сильных кислот на растворы силикатов:

Na2SiO3 + 2HCl = H2SiO3¯ + 2NaCl

Вещество нестойко, при хранении, а также при нагревании теряет воду, образуя в конечном итоге диоксид кремния.

H2SiO3 = SiO2 + H2O

H2SiO3 - слабая кислота, образует соли - метасиликаты или просто силикаты. Силикаты щелочных металлов хорошо растворимы в воде, сильно гидролизованы.

 

SiO32- + H2O HSiO3- + H+

Структурной единицей силикатов является тетраэдрическая группировка SiO44-, соседние группировки соединены через атом кислорода. Известны простые ортосиликаты, например, Ве2SiO4 – фенакит, ZrSiO4 – циркон. Известно несколько типов полимерных силикатов - солей поликремниевых кислот, содержащих анионы, в которых структурные единицы объединены попарно (Si2O76-) и в замкнутые циклы по три (Si3O96-), четыре (Si4O128-) или по шесть (Si6O1812-). В природе широко распространены алюмосиликаты, содержащие также тетраэдры AlO45-, например, K2O×Al2O3×6SiO2 - ортоклаз (полевой шпат), Al2O3×6SiO2×2H2O - каолин.

Для силикатов характерно образование переохлажденных расплавов - стекол. Обычное оконное стекло получают сплавлением соды, песка и извести:

t

Na2CO3 + CaCO3 + 6SiO2 = Na2O×CaO×6SiO2 + 2СО2

Примеси оксидов других металлов придают стеклу окраску: оксиды железа - зеленую, оксиды марганца - коричневую. Изменяя состав сырья, получают специальные стекла: K2O×CaO×6SiO2 - тугоплавкое стекло, K2O×PbO×6SiO2 - хрусталь. Вызванная специальными добавками частичная кристаллизация силикатов приводит к образованию ситаллов - очень прочных стекол.

Галогениды: SiF4 - газ, SiCl4 и SiBr4 – жидкости, SiI4 – твердое вещество. Получают галогениды прямым синтезом. Кроме того, фторид кремния в промышленности получают нагреванием оксида кремния с фторидом кальция в присутствии концентрированной серной кислоты:

 

SiO2 + 2CaF2 + 2H2SO3(конц) = SiF4 + 2CaSO4 + 2H2O

Получение хлорида основано на хлорировании раскаленной смеси оксида кремния и угля:

SiO2 + 2C + 2Cl2 = SiCl4 + 2CO

Галогениды кремния очень реакционноспособны, легко гидролизуются:

 

SiCl4 + 4H2О = H4SiO4 + 4HCl; 3SiF4 + 4H2О = H4SiO4 + 2H2SiF6

В отличие от других галогенидов кислотная природа фторида кремния проявляется не только при гидролизе, но и при взаимодействии с основными фторидами:

t

SiF4 + 2NaF = Na2SiF6

Гексафторкремневая кислота - H2SiF6 - в чистом виде неустойчива, образует соли - гексафторсиликаты. Na2SiF6 применяется в качестве гербицида, при производстве стекол. Гексафторсиликаты магния и цинка используются для получения водонепроницаемого цемента.

Сульфид кремния - SiS2 - полимерное вещество представляет собой белые шелковистые иглы, т.пл.1090 °С, т.кип. 1130 °С. Получают при 1300 °С по реакции:

 

Si + 2H2S = SiS2 + 2H2

Сульфид разлагается водой, реагирует с основными сульфидами, образуя тиосиликаты:

 

SiS2 + 4H2O = H4SiO4 + 2H2S; SiS2 + Na2S = Na2SiS3

Нитрид кремния - Si3N4 - белое порошкообразное вещество, температура возгонки ~1900 °С. Получают прямым синтезом. Химически инертное вещество, реагирует только с расплавами щелочей:

Si3N4 + 12NaOH = 3Na4SiO4 + 4NH3

Нитрид кремния используют в качестве химически стойкого и огнеупорного материала, для получения коррозионностойких и тугоплавких сплавов, в качестве высокотемпературного полупроводника.

Карбид кремния - SiC (карборунд) - тугоплавкие бесцветные кристаллы (т.пл. 2830 °С). Существует в виде кубической (алмазоподобной) и гексагональной модификациях. В чистом виде алмазоподобный карборунд диэлектрик, по твердости близок к алмазу, химически весьма стоек. Разрушается только в присутствии смеси азотной и плавиковой кислот и при сплавлении с щелочами в присутствии окислителя:

t

SiС + 2КOH + 2О2 = К2SiO3 + 4СО2

Карбид кремния получают в дуговых печах при 2000-2200 °С из смеси кокса и кварцевого песка:

SiО2 + 3С = SiС + 2СО

Широко применяется как абразивный и огнеупорный материал, его кристаллы используются в радиотехнике.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)