|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Соединения кремнияСоединения со степенью окисления –4. Степень окисления –4 для кремния реализуется только в бинарных соединениях с активными металлами - силицидах. Получают силициды непосредственным взаимодействием кремния с металлами (700-1200 ºС) или при нагревании смеси соответствующих оксидов и кремния в инертной атмосфере:
6MnO + 5Si = 6Mn3Si + 3SiO2 Силициды переходных металлов являются бертоллидами, они устойчивы к действию кислот и окислителей. Их применяют для получения жаростойких и кислотоупорных сплавов и в качестве высокотемпературных полупроводниковых материалов. Ряд силицидов f-элементов применяют в атомной энергетике в качестве поглотителя нейтронов. Силициды непереходных металлов гидролитически неустойчивы, легко разлагаются водой и кислотами: Mg2Si + 4HCl = 2MgCl2 + SiH4 Соединения со степенью окисления +2. Из соединений кремния(II) известен только оксид - SiO, полученный взаимодействием кремния с его диоксидом при высоких температурах: t Si + SiO2 = 2SiO
Это коричневый порошок, при 1200 ºС возгоняется, химически активен – восстановитель, несолеобразующий оксид. Соединения со степенью окисления +4. Соединения кремния(IV) наиболее многочисленны. Их типичными представителями являются SiHal4, SiO2, SiS2, Si3N4, SiC. Гидриды кремния (силаны) получаются косвенным путем при разложении силицидов кислотами. В обычных условиях моно- и дисиланы (SiH4, Si2H6) газообразны, трисилан – жидкость, высшие представители гомологического ряда – твердые вещества. Связи Si-Si и Si-Н менее прочные по сравнению с аналогичными связями углерода, поэтому соединения кремния с водородом нестойки, ядовиты, на воздухе самопроизвольно воспламеняются, при рН > 7 окисляются водой.
SiH4 + 2O2 = SiO2 + 2H2O; SiH4 + 4H2O = H4SiO4 + 4H2 ортокремниевая кислота
Поскольку sp2- и sp-типы гибридизации для атома кремния не характерны, гидриды с двойными и тройными связями (аналоги этилена и ацетилена) неизвестны. Как уже отмечалось, в отличие от углерода, кремний не образует устойчивых гомоцепей. Но чередование атомов кремния с атомами кислорода приводит к образованию очень устойчивых соединений - мономерного и полимерного строения (силоксанов):
гексаметилдисилоксан силиконы Полимерные силоксаны - силиконы - термостойки, устойчивы к окислению и гидрофобны. Некоторые силиконы растворяют до 20% кислорода, что позволяет использовать их в медицине при лечении легочных заболеваний. Диоксид кремния - SiO2 - кристаллическое вещество полимерного строения. Очень твердое и химически устойчивое, имеет низкий коэффициент температурного расширения, что позволяет использовать его для производства термостойкого стекла. Кварцевое стекло прозрачно для ультрафиолетового излучения и выдерживает большие перепады температур. По химическим свойствам SiO2 кислотный оксид, но с водой не реагирует. Растворяется в растворах щелочей при нагревании: t SiO2 + 2KOH = K2SiO3 + H2O Легко реагирует со фтором, фтороводородном и его водными растворами: SiO2 + 2F2 = SiF4 + O2; SiO2 + 6HF = H2SiF6 + 2H2O гексафторокремниевая кислота Кремний образует ряд кремниевых кислот, большинство из которых известно только по их солям - силикатам. В качестве индивидуальных веществ описаны ортокремниевая кислота - H4SiO4 и метакремниевая кислота - H2SiO3. Ортокремниевая кислота получается в виде водного раствора при гидролизе некоторых соединений кремния, например, его сульфида:
SiS2 + 4H2O = H4SiO4 + 2H2S Полученное вещество неустойчиво и при длительном хранении раствора полимеризуется. Ортокремниевая кислота растворима в воде, слабая двухосновная кислота (К1 = 2 10-10; К2 = 2 10-12), легко полимеризуется.
диортокремниевая кислота тетраортокремниевая кислота тетраметакремниевая кислота
Метакремниевая кислота H2SiO3 образуется в виде золя или геля при действии сильных кислот на растворы силикатов: Na2SiO3 + 2HCl = H2SiO3¯ + 2NaCl Вещество нестойко, при хранении, а также при нагревании теряет воду, образуя в конечном итоге диоксид кремния. H2SiO3 = SiO2 + H2O H2SiO3 - слабая кислота, образует соли - метасиликаты или просто силикаты. Силикаты щелочных металлов хорошо растворимы в воде, сильно гидролизованы.
SiO32- + H2O HSiO3- + H+ Структурной единицей силикатов является тетраэдрическая группировка SiO44-, соседние группировки соединены через атом кислорода. Известны простые ортосиликаты, например, Ве2SiO4 – фенакит, ZrSiO4 – циркон. Известно несколько типов полимерных силикатов - солей поликремниевых кислот, содержащих анионы, в которых структурные единицы объединены попарно (Si2O76-) и в замкнутые циклы по три (Si3O96-), четыре (Si4O128-) или по шесть (Si6O1812-). В природе широко распространены алюмосиликаты, содержащие также тетраэдры AlO45-, например, K2O×Al2O3×6SiO2 - ортоклаз (полевой шпат), Al2O3×6SiO2×2H2O - каолин. Для силикатов характерно образование переохлажденных расплавов - стекол. Обычное оконное стекло получают сплавлением соды, песка и извести: t Na2CO3 + CaCO3 + 6SiO2 = Na2O×CaO×6SiO2 + 2СО2 Примеси оксидов других металлов придают стеклу окраску: оксиды железа - зеленую, оксиды марганца - коричневую. Изменяя состав сырья, получают специальные стекла: K2O×CaO×6SiO2 - тугоплавкое стекло, K2O×PbO×6SiO2 - хрусталь. Вызванная специальными добавками частичная кристаллизация силикатов приводит к образованию ситаллов - очень прочных стекол. Галогениды: SiF4 - газ, SiCl4 и SiBr4 – жидкости, SiI4 – твердое вещество. Получают галогениды прямым синтезом. Кроме того, фторид кремния в промышленности получают нагреванием оксида кремния с фторидом кальция в присутствии концентрированной серной кислоты:
SiO2 + 2CaF2 + 2H2SO3(конц) = SiF4 + 2CaSO4 + 2H2O Получение хлорида основано на хлорировании раскаленной смеси оксида кремния и угля: SiO2 + 2C + 2Cl2 = SiCl4 + 2CO Галогениды кремния очень реакционноспособны, легко гидролизуются:
SiCl4 + 4H2О = H4SiO4 + 4HCl; 3SiF4 + 4H2О = H4SiO4 + 2H2SiF6 В отличие от других галогенидов кислотная природа фторида кремния проявляется не только при гидролизе, но и при взаимодействии с основными фторидами: t SiF4 + 2NaF = Na2SiF6 Гексафторкремневая кислота - H2SiF6 - в чистом виде неустойчива, образует соли - гексафторсиликаты. Na2SiF6 применяется в качестве гербицида, при производстве стекол. Гексафторсиликаты магния и цинка используются для получения водонепроницаемого цемента. Сульфид кремния - SiS2 - полимерное вещество представляет собой белые шелковистые иглы, т.пл.1090 °С, т.кип. 1130 °С. Получают при 1300 °С по реакции:
Si + 2H2S = SiS2 + 2H2 Сульфид разлагается водой, реагирует с основными сульфидами, образуя тиосиликаты:
SiS2 + 4H2O = H4SiO4 + 2H2S; SiS2 + Na2S = Na2SiS3 Нитрид кремния - Si3N4 - белое порошкообразное вещество, температура возгонки ~1900 °С. Получают прямым синтезом. Химически инертное вещество, реагирует только с расплавами щелочей: Si3N4 + 12NaOH = 3Na4SiO4 + 4NH3 Нитрид кремния используют в качестве химически стойкого и огнеупорного материала, для получения коррозионностойких и тугоплавких сплавов, в качестве высокотемпературного полупроводника. Карбид кремния - SiC (карборунд) - тугоплавкие бесцветные кристаллы (т.пл. 2830 °С). Существует в виде кубической (алмазоподобной) и гексагональной модификациях. В чистом виде алмазоподобный карборунд диэлектрик, по твердости близок к алмазу, химически весьма стоек. Разрушается только в присутствии смеси азотной и плавиковой кислот и при сплавлении с щелочами в присутствии окислителя: t SiС + 2КOH + 2О2 = К2SiO3 + 4СО2 Карбид кремния получают в дуговых печах при 2000-2200 °С из смеси кокса и кварцевого песка: SiО2 + 3С = SiС + 2СО Широко применяется как абразивный и огнеупорный материал, его кристаллы используются в радиотехнике. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |