АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обратная матрица. Опр. Матрица называется присоединенной (союзной) к квадратной матрице А, если она состоит из алгебраических дополнений элементов транспонированной матрицы

Читайте также:
  1. Биологическая обратная связь
  2. Биологическая обратная связь.
  3. Вопрос: Действие нормативно-правовых актов во времени, в пространстве и по кругу лиц. Обратная сила закона.
  4. Действие уголовного закона во времени. Обратная сила закона
  5. Документ 4.4. Внешняя обратная связь
  6. Жесткая обратная связь
  7. Инерционная гибкая обратная связь
  8. Инерционная жесткая обратная связь
  9. Обратная дискриминация
  10. Обратная задача теории погрешности
  11. Обратная логика, или Мир Зазеркалья
  12. Обратная матрица

Опр. Матрица называется присоединенной (союзной) к квадратной матрице А, если она состоит из алгебраических дополнений элементов транспонированной матрицы Ат. Чтобы получить присоединенную матрицу , следует транспонировать матрицу А, а затем все ее элементы заменить их алгебраическими дополнениями, то есть

= (3.1)

Опр. Квадратная матрица А называется вырожденной (особенной), если ее определитель |A|=0, и невырожденной, если ее определитель |A|¹0.

Опр. Квадратная матрица А-1 называется обратной (инверсной) к квадратной матрице А, если выполняется условие

А-1×А = А×А-1= Е (3.2)

NB. Обратная матрица А-1 возможна только для невырожденной матрицы А.

Теорема.

Для любой невырожденной квадратной матрицы А существует единственная обратная матрица А-1, которая находится по формуле

А-1 = (3.3)

Доказательство.

1) Из определения А-1×А = А×А-1 следует, что А и А-1- это квадратные матрицы одного порядка.

Пусть матрица А – невырожденная, то есть |A|¹0. Тогда, по правилу умножения матриц, по теореме Лапласа и по свойству 9 определителей, получим

А× = × = =

= |A|× = |A|×E

Следовательно, А× = |A|×E. Аналогично доказывается, что ×А = |A|×E.

Из А× = |A|×E Þ А-1×А× = А-1×|A|×E Þ Е× -1×|A| Þ -1×|A| Þ А-1 = .

2) Докажем единственность обратной матрицы. Предположим, что для матрицы А существует еще одна обратная матрица В. Тогда, согласно определению произведение А×В=Е. Обе части последнего равенства умножим слева на обратную матрицу А-1 и получим: А-1×А×В = А-1×Е Þ Е×В = А-1×Е Þ В = А-1. Fin.

 

Свойства обратной матрицы:

1) |A-1| = ;

2) (A×B)-1 = B-1×A-1;

3) (A-1)т = (Ат)-1.

 

3.1.1. Вычисление обратной матрицы А-1 с помощью присоединенной матрицы .

 

Для этого необходимо:

1) Вычислить определитель |A|. Если |A|=0, следовательно матрица А – вырожденная и для нее нет обратной матрицы А-1. Если же |A|¹0, то следует выполнить следующие действия.

2) Вычислить алгебраические дополнения Aij всех элементов aij матрицы А и построить матрицу АА, в которой на местах элементов aij будут стоять их алгебраические дополнения Aij:

АА =

3) Транспонировать матрицу АА, чтобы получить присоединенную матрицу :

= = .

4) Вычислить обратную матрицу А-1 по формуле: А-1 =

5) Выполнить проверку: А-1×А = Е.

 

Пример. Дано: А= , А-1=?

Решение: 1) Вычислим определитель |A|. Для этого сначала «обнулим» первый столбец, а затем приведем определитель к треугольному виду.

 

|A| = = = – = -(–7) = 7 ¹ 0 Þ $ А-1.

2) Найдем алгебраические дополнения Aij всех элементов aij матрицы А:

А11=(-1)2 = -2; А12=(-1)3 = 1; А13=(-1)4 = 0;

А21=(-1)3 = -3; А22=(-1)4 = –16; А23=(-1)5 = 14;

А31=(-1)4 = 3; А32=(-1)5 = 9; А33=(-1)6 = –7.

3) Составим матрицу АА из алгебраических дополнений Aij и транспонируем ее, чтобы получить присоединенную матрицу :

АА= Þ = = .

4) Найдем обратную матрицу по формуле: А-1 = =

NB. В случае, когда |A| ¹ ±1, множитель лучше оставлять вне обратной матрицы А-1 для удобства проверки.

5) Проверка: А-1×А = = = = Е.

Ответ: А-1 = .

3.1.2. Вычисление обратной матрицы А-1


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)