АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Одиночные нелинейные и тригонометрические уравнения

Читайте также:
  1. Нелинейные искажения в каналах связи.
  2. Нелинейные электрические цепи постоянного тока.
  3. Однородные дифференциальные уравнения.
  4. ОПН (ограничители перенапряжений нелинейные)
  5. Основные тригонометрические функции.
  6. Решить задачу на вывод формулы из уравнения. Придумать обратную к ней.
  7. Тема 4. Нелинейные модели регрессии и их линеаризация.
  8. Тригонометрические неравенства.
  9. Тригонометрические уравнения
  10. Тригонометрические функции

Решение одиночных нелинейных уравнений

Решение одиночных нелинейных уравнений вида f(х)=0 легко обеспечивается функций solve(f(x),x). Это демонстрируют следующие примеры (файл solve):

> solve(х^3-2*х+1,х);

> solve(х^(3/2)=3,х);

3(2/3)

> evalf(%);

2.080083823

> solve(sqrt(ln(х))=2,х);

e4

> evalf(%);

54.59815003

Если уравнение записывается без правой части, то это означает, что она равна нулю. Часто бывает удобно представлять уравнение и его решение в виде отдельных объектов, отождествленных с определенной переменной (файл solve):

> eq:=(2*х^2+х+3=0);

eq := 2x²+x+3 = 0

> s: = [solve(eq,x)];

В частности, это позволяет легко проверить решение (даже если оно не одно, как в приведенном примере) подстановкой (subs):

> subs(x=s[1],eq);

> subs(x=s[2],eq);

> evalf(%);

0. + 0.I = 0.

Сводящиеся к одному уравнению равенства вида f1(х)=f2(x) также решаются функцией solve(f1(x)=f2(x),x):

> solve(х^4=-х-1,х);

RootOf(_ Z4 + _Z + 1, index = 1), RootOf (_Z4 + _Z + 1, index = 2), RootOf(_Z4 + _Z + 1, index = 3), RootOf(_ Z4 +_Z + 1, index = 4)

> evalf(%);

.7271360845 + .9340992895 I, -.72711360845 + .4300142883 I, -.7271360845 - .4300142883 I, .7271360845 - .9340992895 I

> solve({exp(x)=sin(x)},x);

{x = RootOf(_ Z-ln(sin(_Z)))}

> evalf(%);

{x = .3627020561 - 1.133745919I}

> solve(x^4=2*x,x);

> evalf(%);

0., 1.259921050, -.6299605250 + 1.091123636 I, -.6299605250 - 1.091123636 I

Обратите внимание в этих примерах на эффективность применения функции evalf, позволяющей получить решения, выраженные через функцию RootOf, в явном виде.

Некоторые даже с виду простые уравнения могут дать неожиданные для многих пользователей результаты. Пример такого рода приведен ниже (файл solve):

> restart;eq:=ехр(-х)=х;sol:=solve(exp(-х)=х,х);

eq := е(-х) = х sol = LambertW(1)

> evalf(sol);

0.5671432904

В данном случае решение получено через значение специальной функции Ламберта. Впрочем, с помощью функции evalf его можно представить в численном виде.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.016 сек.)