АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение рекуррентных уравнений — rsolve

Читайте также:
  1. VIII. Дополнения из самого раннего детства. Разрешение
  2. А теперь мое решение проблемы
  3. А ты? Кому ты доверяешь и что надо, чтобы ты доверял? Кому не доверяешь и почему? На каких критериях основано твое собственное решение о доверии и недоверии? Перечисли их.
  4. А) Решение задачи Коши для ОДУ
  5. автентическое разрешение плагальное разрешение
  6. Аналитическое решение дифференциальных уравнений
  7. АРБИТРАЖНОЕ РЕШЕНИЕ
  8. Архитектурно-конструктивное решение здания.
  9. Б) Решение краевой задачи для ОДУ
  10. БЕСЕДУЮЩИЙ-С-СОЛНЦАМИ. ЛОРАНА ПРИНИМАЕТ РЕШЕНИЕ
  11. В Красноярском крае единый налог на вмененный доход для отдельных видов деятельности устанавливается решением муниципального или районного Совета депутатов каждой территории.
  12. В63. Гомеровский вопрос, его возникновение, развитие и современное решение. «Илиада» и «Одиссея» как исторический источник.

Функция solve имеет ряд родственных функций. Одну из таких функций — fsolve — мы рассмотрели выше. В справочной системе Maple можно найти ряд и других функций, например rsolve для решения рекуррентных уравнений, isolve для решения целочисленных уравнений, msolve для решения по модулю m и т.д. Здесь мы рассмотрим решение уравнений важного класса — рекуррентных. Напомним, что это такие уравнения, у которых заданный шаг решения находится по одному или нескольким предшествующим шагам.

Для решения рекуррентных уравнений используется функция rsolve:

rsolve(eqns, fens)

rsolve{eqns, fens, 'genfunc'(z))

rsolve(eqns, fens, 'makeproc')

Здесь eqns — одиночное уравнение или система уравнений, fens — функция, имя функции или множество имен функций, z — имя, генерирующее функциональную переменную.

Ниже представлены примеры применения функции rsolve (файл rsolve):

> restart;

> rsolve(f(n)=-2*f(n-1)-f(n-2), f(k));

(-f(0) -f(1))(k + 1)(-1)k +(f(1) +2f(0))(-1)k

> rsolve({f(n)=-3*f(n-1)-2*f(n-2),f(1..2)=1), {f});

{f(w) = -3(-1)n +(-2)n}

> rsolve({y(n)=n*y(n-1), y(0)=1),y);

Г(n + 1)

> rsolve((y(n)*y(n-1)+y(n)-y(n-1)=0,у(0)=a},y);

> rsolve({F(n)=F(n-1)+F(n-2),F(1..2)=1),F, 'genfunc'(x));

> rsolve({y(n+1)+f(n)=2*2^n+n, f(n+1)-y(n)=n-2^n+3, y(k=1..5)=2^k-1,f(5)=6), {y, f});

{f(n)=n+1, y(n) = 2n - 1}

А теперь приведем результат вычисления функцией rsolve n-го числа Фибоначчи. Оно задается следующим выражением:

> eq1:= (f(n+2) = f(n+1) + f(n), f(0) = 1, f(1) = 1};

eq1:= {f(n+2) = f(n+1)+f(n), f(0) = 1, f(1) = 1}

В нем задана рекуррентная формула для числа Фибоначчи — каждое новое число равно сумме двух предыдущих чисел, причем нулевое и первое числа равны 1. С помощью функции rsolve в Maple 9.5 можно получить поистине ошеломляющий результат:

> a1:=rsolve(eq1, f);

Числа Фибоначчи — целые числа. Поэтому представленный результат выглядит как весьма сомнительный. Но на самом деле он точный и с его помощью можно получить числа Фибоначчи (убедитесь в этом сами). Любопытно отметить, что решение в Maple8 заметно отличается от приведенного выше для Maple 9.5. Но только по форме, а не по сути.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)