АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Оценивание выражений

Читайте также:
  1. Второе действие, приводящее к любви и радостному общению, - оценивание себя по достоинству.
  2. Вывод выражений
  3. Выражение суждений и выражений ноэм душевного
  4. Г) Любую информацию из таблиц или других запросов, а также связанную с ней с помощью выражений.
  5. ГЛАВА 9 Практикум для распознавания выражений лица
  6. Интервальное оценивание параметров
  7. ИСПОЛЬЗОВАНИЕ КОМАНД ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ MAPLE ДЛЯ МАТЕМАТИЧЕСКИХ ВЫЧИСЛЕНИЙ.
  8. ИСПОЛЬЗОВАНИЕ КОМАНД ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ MAPLE ДЛЯ МАТЕМАТИЧЕСКИХ ВЫЧИСЛЕНИЙ.
  9. Использование регулярных выражений
  10. латинских пословиц и крылатых выражений
  11. Определение тригонометрических функций. Тождественные преобразования тригонометрических выражений

Встречая выражение, Maple оценивает его, то есть устанавливает возможность его вычисления и, если возможно, вычисляет его. Если выражение — скалярная переменная, то ее значение будет выведено в ячейке вывода. Для переменных более сложных типов выводится не их значение, а просто повторяется имя переменной. Просто повторяются также имена неопределенных переменных.

Для оценивания выражений различного типа существует группа функций, основные из которых перечислены ниже:

• eval(array) — возвращает вычисленное содержимое массива array;

• evalf(expr, n) — вычисляет expr и возвращает вычисленное значение в форме числа с плавающей точкой, имеющего n цифр после десятичной точки;

• evalhf(expr) — вычисляет expr и возвращает вычисленное значение с точностью, присущей оборудованию данного компьютера;

• evalf(int(f, x=a..b)) — оценивает и возвращает значение определенного интеграла int(f,x=a..b);

• evalf(Int(f, x=a..b)) — оценивает и возвращает значение определенного интеграла, заданного инертной функцией Int(f,x=a..b);

• evalf(Int(f, x=a..b, digits, flag)) — аналогично предыдущему, но возвращает значение интеграла с заданным параметром digits числом цифр после десятичной точки и со спецификацией метода вычислений flag;

• evalm(mexpr) — вычисляет значение матричного выражения mexpr и возвращает его;

• evalb(bexpr) — вычисляет и возвращает значения логических условий;

• evalc(cexpr) — вычисляет значение комплексного выражения;

• evalr(expr, ampl) — оценивает и возвращает значения интервальных выражений (функция должна вызываться из библиотеки);

• shake(expr, ampl) — вычисляет интервальное выражение.

Для функции evalf параметр n является необязательным, при его отсутствии полагается n=10, то есть вещественные числа по умолчанию выводятся с мантиссой, имеющей десять цифр после десятичной запятой.

В выражении expr могут использоваться константы, например, Pi, ехр(1), и функции, такие как ехр, ln, arctan, cosh, GAMMA и erf. В матричном выражении mexpr для функции evalm могут использоваться операнды в виде матриц и матричные операторы &*, +, - и ^. В комплексных выражениях cexpr наряду с комплексными операндами вида (а+I*b) могут использоваться многие обычные математические функции:

Sin cos tan csc sec cot

Sinh cosh tanh csch sech coth

Arcsin arccos arctan arccsc arcsec arccot

Arcsinh arccosh arctanh arccsch arcsech arccoth

Exp ln sqrt ^ abs conjugate

Polar argument signum csgn Re Im

Ei LambertW dilog surd

Примеры применения функций оценивания даны ниже (файл eval):

> А: = [[1,2],[3,4]];

А:= [[1,2], [3, 4]]

> eval(А);

[[1,2], [3, 4]]

> evalf(sin(1));

.8414709848

> evalf(sin(2)^2+cos(2)^2,20);

1.0000000000000000000

> evalhf(sin(1));

.841470984807896505

> evalm(20*A+1);

> 1<3;

1<3

> evalb(1<3);

True

> readlib(shake): evalr(min(2,sqrt(3)));

√3

> evalr(abs(x));

INTERVAL(INTERVAL(, 0..∞), -INTERVAL(, -∞..0))

> shake(Pi,3);


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)