АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Поиск эсктремумов функции командой extrema

Читайте также:
  1. II. Функции тахографа и требования к его конструкции
  2. MS Excel.Текстовые функции, примеры использования текстовых функций.
  3. SCADA-система: назначение и функции
  4. V2: Электронные таблицы. Встроенные функции.
  5. VII. В поисках Шизалы
  6. А) Рабочее место б) Функции
  7. Авария Як-42 с командой «Локомотив»
  8. Автоматическая настройка УОЗ на атмосферном двигателе с помощью функции замеров ускорения.
  9. Адаптивные сайты имеют высокий приоритет у поисковиков, в сравнении с обычными сайтами, так как это необходимый тренд времени.
  10. Активный и пассивный словарь. Историзмы и архаизмы. Типы архаизмов. Стилистические функции.
  11. Акустический метод поиска повреждений
  12. Алгоритм диагностического поиска при наличии у больного тонзиллита.

Ряд функций служит специально для вычисления экстремумов, максимумов и минимумов функций, а также для определения их непрерывности. Одна из таких функций extrema позволяет найти экстремумы выражения expr (как максимумы, так и минимумы) при ограничениях constrs и переменных vars, по которым ищется экстремум:

extrema(expr, constrs)

extrema(expr, constrs, vars)

extrema(expr, constrs, vars, 's')

Ограничения contrs и переменные vars могут задаваться одиночными объектами или списками ряда ограничений и переменных. Найденные координаты точки экстремума присваиваются переменной 's'. При отсутствии ограничений в виде равенств или неравенств вместо них записывается пустой список {}.

Эта функция в предшествующих версиях Maple находилась в стандартной библиотеке и вызывалась командой readlib(extrema). Но начиная с Maple 7 ее можно использовать без предварительного объявления. В этом убеждают приведенные ниже примеры (файл extrema):

> restart:

> z:=(х,y)-> а*х^2 + b*x*y + с*y^2 + d*(х-y);

z:= (х,у)→ах² + bxy + су² + d(х - y)

> extrema(z(х,y),{},{х,y},'s');

> s;

> extrema(а*х^2+b*х+с,{},x,'s');s;

> extrema(х*ехр(-х),{}, х, 's'); s;

{e(-1)} {{x = 1}}

> extrema(sin(x)^2,{},x,'s');s;

{0,1} {{x=0}, {х=½π}}

> extrema(х+у/z,х^2+у^2+z^2=1,{x,y,z},'s');s;

{max(1 - RootOf(_Z4 + 1)2, - 1 + RootOf(_Z4 + 1)2), min(1 - RootOf(_Z4 + 1)2, -1 + RootOf(_Z4 + 1)2)} {{z = RootOf(_ Z4 + 1), x = -1, у = RootOf(_Z4 + 1)3}, {x = 1, z = RootOf(_ Z4 + 1), у = - RootOf(_ Z4 + 1)3}}

> evalf(%);

{{x = -1., у = -0.7071067812+0.7071067812 I, z = 0.7071067812+0.7071067812 I},{z = 0.7071067812+0.7071067812 I, x = 1., у = 0.7071067812-0.7071067812 I}}

Как видно из приведенных примеров, функция extrema возвращает как значения экстремумов, так и значения аргументов, при которых экстремумы наблюдаются. Обратите внимание, что в первом примере результат вычисления экстремума функции z(x,y) оказался тем же, что и в предшествующем разделе. Это говорит в пользу применения функции extrema.

Для проверки оптимизационных алгоритмов существует ряд тестовых функций. Одна из таких функций — функция двух переменных Розенброка. В представленном ниже примере она задана как rf(x,y):

> rf:= (x,у)->100*(у-х^2)^2+(1-х)^2;

rf:=(x,.y)→100(y-x²)²+(1-x)²

> extrema(rf(х,у),{х,у},'s');s;

{{y = -RootOf f(_ Z4 + 1)3, х = 1, z = RootOf(_Z4 + 1)}, {x = -1, у = RootOf(_Z4 + 1)3, z = RootOf(_Z4 + 1)}}

> evalf(%);

{{y = 0.7071067812-0.7071067812, x = 1., z =0.7071067812+0.7071067812 I}, {z = 0.7071067812+0.7071067812 I, x = -1.,y = -0.7071067812+0.7071067812 I}}

Как нетрудно заметить, минимум этой функции при значениях x=у= 1, равный 0, функцией extrema явно не обнаружен. Однако это не недостаток данной функции, а просто неудачное ее применение. Функция Розенброка имеет минимум значения и для его обнаружения надо использовать функцию minimize, описанную ниже.

Функция extrema дает неплохие результаты при поиске экстремумов простых аналитических функций, не имеющих особенностей. Однако при анализе сложных функций, содержащих функции со сравнением аргумента (например, abs(x), signum(x) и др.) функция extrema часто отказывается работать и просто повторяет запись обращения к ней.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)