АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Csgn(x)x

> simplify(g,assume=real);

|x|

> simplify(g,assume=positive);

x

> simplify(g,symbolic);

x

Но, чуть иначе:

> g:=sqrt(х^у);

> simplify(g);

> simplify(g,assume=real);

> simplify(g,assume=positive);

> simplify(g,symbolic);

Возможно также применение функции simplify в форме simplify[<name>] где <name> — одно из следующих указаний: atsign, GAMMA, hypergeom, power, radical, RootOf, sqrt, trig.

Ниже даны примеры применения функции simplify:

> simplify(4^(1/2)+3);

> simplify((х^у)^z+3^(3),power);

y)z + 27

> simplify(sin(х)^2+cos(х)^2,trig);

> e:=cos(х)^5+sin(х)^4+2*cos(х)^2-2*sin(х)^2-cos(2*х);

е: = cos(x)5 + sin(x)4 + 2cos(x)2 - 2sin(x)2 -cos(2x)

> simplify(e);

cos(x)5 + cos(x)4

> simplify(GAMMA(n+4)/GAMMA(n),GAMMA);

n(n+1)(n+2)(n+3)

> r:=RootOf(х^2-2=0,х):

> simplify(r^2,RootOf);

> simplify(1/r,RootOf);

½ RootOf(_Z² - 2)

> simplify(ln(x*y),power,symbolic);

ln(x) + ln(y)

> е:=(-5*b^2*а)^(1/2);

> simplify(e,radical);

> simplify(e,radical,symbolic);

> simplify(GAMMA(n+1)/n!);

Действие функции simplify существенно зависит от областей определения переменных. В следующем примере упрощение выражения не произошло, поскольку результат этой операции неоднозначен:

> restart;

> simplify(sqrt(х^4*у^2));

Однако, определив переменные как реальные или положительные, можно легко добиться желаемого упрощения:

> simplify(sqrt(х^4*у^2),assume=positive);

x² у

> simplify(sqrt(х^4*у^2),assume=real);

x²|y|

С помощью равенств можно задать свои правила преобразования, например:

> eq:=x^2+2*x*y+y^2;

eq:=х² +2ху + y²

> simplify(eq,{х=1));

y² + 2y + 1

> simplify(eq,{х^2=х*у, у^2=1});

3хy + 1

> simplify(eq,{х,у});

Обратите внимание на то, что указание в списке равенств только левой части равенства означает, что правая часть принимается равной нулю. Если функция simplify не способна выполнить упрощение выражения expr, то она просто его повторяет. Это сигнал к применению опций, уточняющих преобразования.

Сложность упрощаемых выражений зависит от объема ОЗУ и вида интерфейса. Очень большие выражения надо разбивать на подвыражения и работать с ними раздельно.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)