АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Консервативные силы. Потенциальная энергия

Читайте также:
  1. Акты, протоколы. Состав реквизитов акта и протокола. Расположение реквизитов на бланке А4. Требования к оформлению акта и протокола. Придание документу юридической силы.
  2. БУДУЩЕЕ – НЕ ИДИТЕ В НАСТУПЛЕНИЕ ВСЕЙ ЛИНИЕЙ ФРОНТА. ВЫБЕРИТЕ ОДНО, САМОЕ ВЫГОДНОЕ СТРАТЕГИЧЕСКИ НАПРАВЛЕНИЕ И СОСРЕДОТОЧЬТЕ ТАМ СВОИ СИЛЫ.
  3. Внутренняя энергия
  4. Внутренняя энергия.
  5. Вопрос 2. Мировой рынок рабочей силы.
  6. ГЛАВА 5. ГИБРИДНАЯ ЭНЕРГИЯ
  7. ГРАВИТАЦИОННЫЕ СИЛЫ. ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ
  8. Кинетическая энергия. Теорема о кинетической энергии
  9. КОМПЛЕКС II Жизненная энергия (Сжимание Инь)
  10. Консервативные силы
  11. Конструкт 'психическая энергия' в составе теории

 

В современном естествознании принято считать, что взаимодействие тел осуществляется посредством полей. Полем сил называют область пространства, в каждой точке которого на частицу действует сила, закономерно изменяющаяся от точки к точке. Другими словами, если в каждой точке пространства на материальную точку действуют силы, то говорят, что в пространстве действует силовое поле. Пример силового поля – поле силы тяжести. Пусть тело перемещается из точки 1 в точку 2 (рис. 5.3).

 

 

Рисунок 5.3 – Движение точки в поле силы тяжести

 

Вычислим работу, совершенную силой тяжести при этом перемещении. Согласно определению механической работы (5.1) мы можем записать:

 

. (5.10)

 

Теперь воспользуемся тем обстоятельством, что вблизи поверхности Земли сила тяжести постоянна: . Постоянную величину можно вынести из-под знака интеграла, и выражение (5.10) для работы запишется так:

 

. (5.11)

 

Интеграл в выражении (5.11) представляет собой сумму элементарных перемещений , которые совершает тело при своем движении из точки 1 в точку 2. Очевидно, что сумма всех элементарных перемещений будет равна . Следовательно, выражение (5.11) принимает вид

 

(5.12)

 

где h 1 – высота, на которой находится тело над поверхностью Земли в начальном положении 1, а h 2 – высота в конечном положении 2. А теперь самое главное. При вычислении работы силы тяжести мы ничего не говорили о траектории, по которой движется наше тело. Очевидно, что для любой траектории, ведущей из точки 1 в точку 2, вектор перемещения будет один и тот же, и, согласно выражению (5.12), для всех траекторий работа силы тяжести будет иметь одно и то же значение. То есть работа силы тяжести не зависит от формы траектории, а определятся только начальной и конечной высотой тела над поверхностью Земли.

Силы, работа которых не зависит от формы траектории, по которой частица переходит из одного положения в другое, а определяется только начальным и конечным положением частицы, называются консервативными. [7] В этом случае каждому положению частицы в силовом поле можно сопоставить некоторую функцию , такую, что разность значений этой функции в точках 1 и 2 определяет работу сил поля по перемещению частицы между этими точками:

 

. (5.13)

 

Функцию U называют потенциальной энергией частицы. Сравнивая формулы (5.12) и (5.13), мы приходим к выводу, что потенциальная энергия тела в поле силы тяжести описывается формулой

 

, (5.14)

 

где h – высота, на которой находится тело над поверхностью Земли.

К консервативным силам относятся и силы упругости. Найдем потенциальную энергию упругой деформации. Сила упругости (см. лекцию 2, формула (2.10)) равна

 

. (5.15)

 

Здесь х – смещение конца пружины из положения равновесия. Если мы будем растягивать или сжимать пружину, то, на основании 3-го закона Ньютона, работа внешней силы, противоположно направленной силе упругости пружины, будет равна

 

. (5.16)

 

Эта работа внешней силы была затрачена на увеличение потенциальной энергии пружины. Если считать, что энергия пружины в недеформированном состоянии равна 0, то тогда:

 

. (5.17)

 

Потенциальную энергию часто называют энергией взаимодействия. Действительно, в первом примере взаимодействуют тело и Земля, в случае пружины взаимодействуют отдельные части одного тела (напомним, что силы упругости появляются при изменении взаимного расположения заряженных частиц, из которых состоит тело).

Еще один пример консервативных сил – центральные силы. Так называют силы, величина которых зависит только от расстояния между двумя частицами, а направлены они вдоль линии, соединяющей частицы. Центральными являются сила всемирного тяготения и сила Кулона (см. лекцию 2, формулы (2.5) и (2.6)). Для центральных сил элементарная работа будет равна

 

.

 

Соответственно, работа, совершаемая на конечном пути s, равна

 

. (5.18)

 

Из выражения (5.18) ясно, что полная работа зависит от начального и конечного расстояний от частицы до силового центра и не зависит от формы траектории. Подставим в формулу (5.18) выражение для силы всемирного тяготения (2.5):

 

. (5.19)

 

Знак “–” перед интегралом отражает тот факт, что направления силы и перемещения противоположны, если начало координат помещено на силовом центре. Из выражений (5.22) и (5.16) можно сделать вывод, что потенциальная энергия сил тяготения равна

 

. (5.20)

 

И ещё несколько слов о потенциальной энергии. Согласно выражению (5.13), работа консервативной силы будет равна убыли потенциальной энергии:

. (5.21)

 

Расписывая скалярное произведение, получим:

 

. (5.22)

 

Если перемещение частицы происходило только вдоль x, в то время как y -я и z -я координаты оставались постоянными, то . Здесь значок означает частную производную по координате, которая берётся, когда остальные координаты остаются неизменными. Аналогичным образом получим компоненты сил F y и F z. Таким образом:

 

. (5.23)

 

В соответствии с выражением (5.23) мы имеем 3 проекции силы на оси координат. Если умножим их на соответствующие единичные вектора и сложим, то получим вектор силы:

 

, (5.24)

 

или в сокращённом виде

 

. (5.25)

 

Здесь подразумевается, что

 

.

 

В соответствии с выражением (5.25) gradU является вектором (читается “градиент U ”), хотя функция U является скаляром. Наряду с выражением (5.25) используется обозначение Ñ U: , где Ñ (набла) – дифференциальный оператор, также называемый оператором Гамильтона, есть:

 

.

 

Отметим, что grad какой-либо скалярной функции, как это доказывается в высшей математике, определяет направление наиболее быстрого роста этой функции. Если это свойство градиента скалярной функции применить к потенциальной энергии, то из уравнения (5.25) следует, что консервативные силы всегда направлены в сторону наиболее быстрого уменьшения потенциальной энергии.[8]

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)