|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Распределение молекул по величине скорости и по кинетической энергии
Формулу Максвелла:
можно преобразовать так, чтобы она давала ответ на вопрос, какова вероятность того, что молекулы имеют величину скорости от
Рисунок 8.1 – Пространство скоростей
По осям системы координат в этом пространстве мы будем откладывать проекции вектора скорости
а функция распределения по модулям скоростей имеет вид (рис 8.2)
Рисунок 8.2 – График функции распределения по модулям скоростей Площадь под кривой на этом рисунке равна 1 в соответствии с условием нормировки. При увеличении температуры максимум кривой на рисунке 8.2 уменьшается и смещается вправо, но площадь, ограниченная кривой, остаётся неизменной. Исходя из распределения молекул по скоростям (8.3), можно перейти к распределению по энергиям кинетического движения молекул. Для этого в выражении (8.3) от переменной v нужно перейти к кинетической энергии поступательного движения молекулы
где
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (2.359 сек.) |