АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Распределение Больцмана

Читайте также:
  1. III. Распределение часов курса по темам и видам работ
  2. А) функциональным распределением
  3. Барометрическая формула. Распределение Больцмана
  4. Биномиальное распределение.
  5. ВОДОСБОР И ВОДОРАСПРЕДЕЛЕНИЕ
  6. Геометрическое распределение
  7. Гипергеометрическое распределение
  8. ЗАКОН СТЕФАНА-БОЛЬЦМАНА.
  9. Как происходит перераспределение моментов?
  10. Кинетическое уравнение Больцмана в приближении времени релаксации.
  11. Лесная биомасса и ее вертикальное распределение
  12. Некоторое применение кинетического уравнения Больцмана к равновесным системам. Распределения Максвелла и Максвелла-Больцмана.

 

Преобразуем показатель экспоненты в формуле (8.10), учтём, что

 

. (8.11)

 

В выражении (8.11) U=mgh – потенциальная энергия одной молекулы в поле силы тяжести. В результате вместо выражения (8.10) получим:

 

. (8.12)

 

Самое замечательное заключается в том, что формула (8.12) справедлива не только в случае потенциального поля силы тяжести, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии теплового хаотического движения. Формулу (8.12) называют распределением Больцмана.

Согласно формуле (8.12) количество молекул, попадающих в параллелепипед, расположенный в точке с координатами x, y, z и имеющий объем dV=dxdydz, равно

.

 

Вероятность того, что частица имеет потенциальную энергию

. (8.13)

 

В формуле (8.13) А – нормировочный множитель[13]. События, заключающиеся в том, что молекула имеет кинетическую энергию Е к и потенциальную энергию , являются статистически независимыми. Поэтому вероятность того, что частица обладает полной энергией Е=Ек+ , на основании выражений (8.4) и (8.13) может быть записана в виде

. (8.14)

 

Подчеркнем, что в формуле (8.14), которую также называют распределением Больцмана, Е – это полная энергия частицы, соответственно, формула (8.14) описывает распределение частиц по энергии. В форме (8.14) распределение Больцмана имеет универсальный характер – оно применимо и для описания квантовых систем. В этом случае полная энергия частицы может принимать только дискретный ряд значений: Е 1, Е 2,…, как это имеет место, например, для энергии атома. В этом случае распределение Больцмана имеет вид

 

. (8.15)

 

где N i – число частиц, имеющих энергию Е i, А – нормировочный множитель, который находится из условия

 

, (8.16)

 

где N – полное число частиц в рассматриваемой системе. Выражая постоянную А из уравнения (8.16), получаем окончательное выражение распределения Больцмана для случая дискретных значений энергии:

 

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)