|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Электронный усилитель и его основные нелинейные параметры
Независимо от назначения электронного усилителя (ЭУ) в каждом из них основным элементом является усилительный прибор (УП), например, биполярный (БПТ) или полевой (ПТ) транзисторы. Поскольку характеристика передачи, в частности, коэффициент усиления, является нелинейной функцией от входного (управляющего) воздействия, то выходной сигнал усилителя не повторяет форму входного – он всегда либо искажен, т.е. несинусоидален при синусоидальном входном, либо к нему «примешиваются» различные комбинационные (интермодуляционные) помехи, возникающие в ЭУ в процессе нелинейного преобразования входного полезного сигнала. Следует заметить, что сам процесс усиления есть процесс нелинейного преобразования сигнала. Эти помехи с частотой fп накладываются на полезный сигнал с частотой fс и нарушают его информационную достоверность. В зависимости от рабочего частотного диапазона усиливаемого сигнала существуют различия в оценке нелинейных параметров усилителя. Так, в усилителе низкой частоты (УНЧ) измеряются так называемые нелинейные гармоники, т.е. образуемые в усилителе помехи, «кратные» полезному сигналу fс с частотами 2 fс, 3 fс, 4 fс и т.д. В ЭУ различной аппаратуры уплотнения кабельных, релейных и т.д. линий электросвязи, а также в усилителях радиочастоты всех радиоприемных устройств, включая устройства высокочастотной (ВЧ) связи по высоковольтным линиям электропередачи, наиболее опасными являются нелинейные явления – интермодуляция и блокирование. Опасность такого вида нелинейности как блокирование малого полезного сигнала помехой большого уровня – состоит в том, что под действием мощной помехи, которая может находиться за полосой пропускания усилителя, происходит изменение коэффициента усиления, которое иногда превышает допустимые пределы. В [18]отмечается, что высокочастотные (ВЧ) каналы связи по высоковольтным линиям (ВЛ) находятся в очень сложных условиях помехозащищенности, так как в широком спектре используемых в каналах частот (0,3 –1000 кГц) и амплитуд сигналов присутствуют сосредоточенные помехи от соседних ВЧ каналов ВЛ, радиостанций и каналов проводных воздушных линий связи, от экранирования линейных проводов и разрядов по поверхности изоляторов, а также от коммутационных операций в сети и атмосферных разрядов. От уровня и формы этих помех существенно зависит информативная достоверность передаваемых и обрабатываемых в каналах полезных сигналов телемеханики, противоаварийной автоматики и релейной защиты ВЧ каналов. Поэтому вопросы обеспечения надежной работы каналов ВЧ связи по ВЛ, связанное с разработкой и усовершенствованием систем передачи информации по линиям сверхвысокого напряжения, а также систем измерения и контроля параметров ВЧ тракта, является важной задачей, решение которой способствует повышению надежности работы энергосистемы в целом. В связи с изложенным, ознакомление студентов, а в будущем, инженеров, специализирующихся в области энергоснабжения, с вопросами передачи и контроля информации а также измерения нелинейных параметров усилителей аппаратуры ВЧ каналов уплотнения в линиях электропередачи, представляется весьма важным.
1. 2. Теоретические основы анализа явления блокирования
Ранее, в лабораторной работе № 4, посвященной исследованию не-линейных параметров усилителя на полевом транзисторе, рассмотрен один из опасных видов нелинейности – интермодуляция, относящаяся к разряду так называемой «тонкой нелинейности». Вследствие интермодуляции, вызванной многочисленными помехами, имеющими место в упомянутых каналах ВЧ уплотнения по ВЛ, в усилителе из-за нелинейности его переда-точной характеристики образуются нелинейные интермодуляционные (ком-бинационные) помехи второго fс ± fп, третьего 2fс – fп (или 2fп – fс) и других по-рядков. Их называют комбинационными продуктами нелинейного преобра-зования (ПНП), так как они являются комбинациями из двух, трех и т.д. час-тот сигналов, одним из которых является полезный сигнал с амплитудой Uс и частотой fс, а другой – помеха Uп с частотой fп.. Наиболее опасны ПНП третьего порядка, так как по частоте они всегда оказываются вблизи полезного сигнала, т.е. в полосе пропускания усилителя, и, следовательно, нарушают достоверность полезной информации. Блокирование, в отличие от интермодуляции, относится к разряду так называемой «грубой» нелинейности, при которой в результате возрастающего уровня помехи, которая может находиться далеко за полосой пропускания усилителя, происходит изменение коэффициента усиления, превышающее допустимые пределы (обычно более 20%) [13]. Нелинейные свойства усилителей, зависящие от указанных выше нелинейных явлений, в технической литературе определяются и анализируются различным образом. Классический анализ опирается в основном на методике, основанной на разложении в ряд Тейлора функции, выражающей зависимость выходного тока от напряжения на управляющем электроде усилительного прибора при сопротивлении нагрузки Rн = 0. При этом оказываются неучтенными нелинейность выходных сопротивлений, а также упомянутое сопротивление нагрузки. Последнее обстоятельство приводит к недопустимо большим погрешностям в количественной оценке ПНП, а, следовательно, делает указанный метод практически непригодным для анализа нелинейных явлений, в особенности, при больших реальных уровнях помех на входе усилителя. В [11, 13] показано, что при таких условиях наиболее целесообразно использовать методику анализа, основанную на разложении мгновенного коэффициента передачи (МКП) k (t) в ряд Тейлора, коэффициенты которого представляются в виде рядов Фурье по частоте помехи. Затем, выделив фильтром соответствующие спектральные составляющие выходного сигнала и воспользовавшись аппроксимацией реальной характеристики передачи усилительного прибора, находят постоянную составляющую и амплитуды соответствующих гармоник спектра, а, следовательно, соответствующие коэффициенты и параметры нелинейности. Так, под воздействием аддитивно действующих на входе усилителя на ПТ мгновенных значений гармонических напряжений полезного сигнала uс и помехи uп при выбранном постоянном напряжении смещения между затвором и истоком Uсм = Uзи мгновенный коэффициент передачи усилителя запишется следующим образом. , (1) где ; ; – текущая фаза соответствующего напряжения; Uс и Uп – амплитуды напряжений; Uс < Uп; Uс << Uзи. В результате разложения функции и ее первой и второй производных в ряд Фурье по частоте помехи и последующих тригонометрических преобразований получим выражения для упомянутых амплитуд напряжений соответствующих гармоник спектра, коэффициентов и параметров нелинейности: , (2) , (3) , (4) , (5) , (6) где – амплитуда полезного выходного сигнала; (7) – постоянная составляющая коэффициента усиления, определяемая как нулевая гармоника ряда Фурье; – амплитуда комбинационной составляющей третьего порядка, изменяющаяся с частотой или ; – коэффициент интермодуляционных помех 3-го порядка; – (8) – вторая гармоника ряда Фурье, ответственная за образование комбинационных помех 3-го порядка; – (9) – полином, аппроксимирующий экспериментальную функцию, выражающую коэффициент усиления в рабочей точке усилителя . ; ; (10) – вторые производные по напряжению от , , , соответственно; , , и т.д. – коэффициенты усиления, их крутизна, кривизна и т.д. в рабочей точке, которые находятся как коэффициенты аппроксимирующего полинома; – обобщенный параметр нелинейности третьего порядка, который в малосигнальном режиме (Uс << Uп) не зависит от входного сигнала, а определяется значением коэффициента усиления и его производными в рабочей точке (11) Следовательно, параметр нелинейности , зависящий от второй производной малосигнального коэффициента усиления в любой рабочей точке , является определяющим в оценке нелинейных свойств усилителя по интермодуляции 3-го порядка. Чем более стремится к нулю (т.е. ), тем меньше коэффициент интермодуляции 3-го порядка , иначе тем более линейным является усилительный прибор (транзистор). Коэффициент в формуле (6), определяющий степень блокирования малого сигнала помехой большого уровня, как видно из формулы (7) в соответствующей рабочей точке зависит только от уровня помехи. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |