АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методика оценки нелинейных свойств ВЧ усилителя на основе определения параметров нелинейности и выбор его оптимального режима

Читайте также:
  1. B. Приведение параметров микроклимата и нормативным показателям
  2. I. Методы выбора инновационной политики
  3. II. Порядок подготовки, защиты и оценки квалификационной работы
  4. III. Для углубленной оценки санитарного состояния почвы и способности ее к самоочищению исследуют показатели биологической активности почвы.
  5. III. Метод, методика, технология
  6. IV. Выбор и проектирование инновационных образовательных технологий
  7. А) Аутентичность - полное осознание настоящего момента, выбор способа жизни в данный момент, принятие ответственности за свой выбор
  8. а) наименьшая частица вещества, которая сохраняет его химические свойства.
  9. А. Методика розрахунків збитків внаслідок забруднення атмосферного повітря
  10. Адвокатская неприкосновенность
  11. Алюминий. Классификация сплавов на основе алюминия, маркировка
  12. Анализ основных свойств воды теплоностиля или теплоёмкости

 

Нелинейные свойства усилителей, зависящие от таких опасных в них нелинейных явлений как интермодуляция и блокирование, в технической литературе определяются и анализируются различным образом. Классический анализ опирается в основном на методике, основанной на разложении в ряд Тейлора функции, выражающей зависимость выходного тока от напряжения на управляющем электроде усилительного прибора при сопротивлении нагрузки Rн = 0. При этом оказываются неучтенными нелинейность выходных сопротивлений, а также упомянутое сопротивление нагрузки. Последнее обстоятельство приводит к недопустимо большим погрешностям в количественной оценке продуктов нелинейного преобразования (ПНП), а, следовательно, делает указанный метод практически непригодным для анализа нелинейных явлений, в особенности, при больших реальных уровнях помех на входе усилителя.

В [11, 13] показано, что при таких условиях наиболее целесообразно использовать методику анализа, основанную на разложении мгновенного коэффициента передачи (МКП) k (t) в ряд Тейлора, коэффициенты которого представляются в виде рядов Фурье по частоте помехи. Затем, выделив фильтром соответствующие спектральные составляющие выходного сигнала и воспользовавшись аппроксимацией реальной характеристики передачи усилительного прибора, находят постоянную составляющую и амплитуды соответствующих гармоник спектра, а, следовательно, соответствующие коэффициенты и параметры нелинейности.

Так, под воздействием аддитивно действующих на входе усилителя на ПТ мгновенных значений гармонических напряжений полезного сигнала uс и помехи uп при выбранном постоянном напряжении смещения между затвором и истоком Uсм = Uзи мгновенный коэффициент передачи усилителя запишется следующим образом:

, (6.1)

где ; ; – текущая фаза соответствующего напряжения; Uс и Uп – амплитуды напряжений; Uс < Uп; Uс << Uзи.

В результате разложения функции и ее первой и второй производных в ряд Фурье по частоте помехи и последующих тригонометрических преобразований получим выражения для упомянутых амплитуд напряжений соответствующих гармоник спектра, коэффициентов и параметров нелинейности:

, (6.2)

, (6.3)

, (6.4)

, (6.5)

, (6.6)

где – амплитуда полезного выходного сигнала;

(6.7)

– постоянная составляющая коэффициента усиления, определяемая как нулевая гармоника ряда Фурье;

– амплитуда комбинационной составляющей третьего порядка, изменяющаяся с частотой или ; – коэффициент интермодуляционных помех 3-го порядка;

– (6.8)

– вторая гармоника ряда Фурье, ответственная за образование комбинационных помех 3-го порядка;

– (6.9)

– полином, аппроксимирующий экспериментальную функцию, выражающую коэффициент усиления в рабочей точке усилителя .

; ; – (6.10)

– вторые производные по напряжению от , , , соответственно;

, , и т.д. – коэффициенты усиления, их крутизна, кривизна и т.д. в рабочей точке, которые находятся как коэффициенты аппроксимирующего полинома;

– обобщенный параметр нелинейности третьего порядка, который в малосигнальном режиме (Uс << Uп) не зависит от входного сигнала, а определяется значением коэффициента усиления и его производными в рабочей точке

(6.11)

Следовательно, параметр нелинейности , зависящий от второй производной малосигнального коэффициента усиления в любой рабочей точке , является определяющим в оценке нелинейных свойств усилителя по интермодуляции 3-го порядка. Чем более стремится к нулю (т.е. ), тем меньше коэффициент интермодуляции 3-го порядка , иначе тем более линейным является усилительный прибор (транзистор).

Коэффициент в формуле (6.6), определяющий степень блокирования малого сигнала помехой большого уровня, как видно из формулы (6.7) в соответствующей рабочей точке зависит только от уровня помехи.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)