|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задание на курсовую работу
1. Аппроксимировать полиномом седьмой степени экспериментальную зависимость коэффициента усиления Кэ = f (Uсм) заданного усилительного каскада на полевом транзисторе (ПТ) типа 2П902А (рис. ДЗ ниже)
2. На основе вычисленных коэффициентов аппроксимации и гармонического анализа с использованием метода МКП по формулам (6.4, 6.5 и 6.9-6.11) определить параметры нелинейности третьего порядка и выбрать оптималь-ный режим работы каскада.
Рис. ДЗ. Исследуемый усилительный каскад на ПТ 2П902А Аппроксимация [ Вариант № 2- ПТ 2П902А (К)] Аппроксимацию проводим в следующей последовательности. 1. Задаем 11 экспериментальных значений коэффициента усиления в равноотстоящих точках напряжения смещения «затвор-исток» в интервале Таблица 6.2
2. Находим коэффициенты разложения ортогональных полиномов по формулам (6.25) преобразовав их при N =11 в выражения (6.26)
![]() Заметим, что при определении коэффициента D 0
Для определения Для определения Аналогично находим остальные коэффициенты:
Полином по степеням х находится по формуле (6.19), с преобразованием ее в (6.27), в которой аппроксимирующий полином в отличие от аппроксимируемой функции
где Группируя коэффициенты по степеням х и собирая подобные члены, приходим к удобным выражениям для вычисления членов А 0, А 1 х, А 2 х 2, А 3 х 3 и т.д. этого полинома:
В итоге полином по степеням х:
![]() Для перевода этого полинома в истинный полином по степеням - при совпадении значений
- при несовпадении значений
Примечание. Чтобы не усложнять расчет при заданном интервале сме-щений Uсм = (– U1…– Un) [ формула (6.31)], рекомендуется перевести этот интервал смещений в интервал, заданный в формуле (6.30) и дальнейший расчет производить на основе полученного «нормированного» полинома относительно значений Uсм = Uзи.н. = Uзи + U1. Полученный интервал будет соответствовать формуле (6.30),т.е. Uзи.н = 0 … Un.
Рассматриваемый полином удовлетворяет требованиям формулы (6.30). Подставляем в (6.28) значение
получаем истинный теоретический полином Во по степеням
По найденному уравнению вычисляем и заносим в нижнюю графу табл. 6.2 значения В 0 в контрольных точках напряжения смещения Из сопоставления экспериментальных значений Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.) |