|
|||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Оценка качества уравнения в целомОценка значимости уравнения регрессии в целом производится на основе -критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной от среднего значения раскладывается на две части – «объясненную» и «необъясненную»:
,
где – общая сумма квадратов отклонений; – сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений); – остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов. Схема дисперсионного анализа имеет вид, представленный в таблице ( – число наблюдений, – число параметров при переменной ).
Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину - критерия Фишера:
.
Фактическое значение -критерия Фишера сравнивается с табличным значением при уровне значимости и степенях свободы и . При этом, если фактическое значение -критерия больше табличного, то признается статистическая значимость уравнения в целом. Для парной линейной регрессии , поэтому
.
Величина -критерия связана с коэффициентом детерминации , и ее можно рассчитать по следующей формуле:
. Прогнозирование. Построенная регрессионная модель применяется для прогнозирования результата при заданном значении фактора . Точечная оценка индивидуального прогнозного значения определяется по формуле:
.
Доверительный интервал для среднего значения находят по формуле:
,
где величина является точечной оценкой среднего квадратического отклонения прогнозного значения результата:
.
Доверительный интервал для оценки индивидуального значения результата определяется с учетом вариации значения результативного признака при фиксированном значении фактора:
,
где - оценка общей вариации результата, обусловленной действием случайных факторов , а также ошибками выборочного исследования уравнения регрессии:
. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |