АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Группа статистических критериев, которые не включают в расчёт параметры вероятностного распределения и основаны на оперировании частотами или рангами

Читайте также:
  1. PrPf употребляется в тех предложениях, которые можно адекватно переформулировать в виде предложений в настоящем иди будущем времени.2
  2. V. Организационный комитет и рабочая группа турнира.
  3. А расчётных операций.
  4. Анорексия - параметры от Кащея
  5. Б) медиальная группа
  6. Б. Некоторые из абсолютных истин могут быть относительными
  7. Базовые параметры, основные участники
  8. БУДУЩЕЕ: НЕКОТОРЫЕ ПРЕДПОЛОЖЕНИЯ
  9. В 1291 Данте женился на Джемме Донати по политическому расчёту. От этого брака было семь детей – шесть сыновей и дочь.
  10. В 2. Диффузионная сварка: сущность, преимущества; параметры сварки; области применения.
  11. В 4. Микроклимат производственных помещений, параметры микроклимата и их воздействие на организм человека. Способы нормализации микроклимата.
  12. В зависимости от причин, которые вызывают безработицу, различают три ее вида: фрикционная; структурная; циклическая.

-Q-критерий Розенбаума

Простой непараметрический критерий.

Мощность критерия не очень велика. В том случае, если он не выявляет различий, можно обратиться к другим статистическим критериям, например, к U-критерию Манна-Уитни или критерию φ* Фишера.

Данные для применения Q-критерия Розенбаума должны быть представлены хотя бы в порядковой шкале. Признак должен измеряться в значительном диапазоне значений (чем более значительном – тем лучше).

-U-критерий Манна-Уитни

Простой непараметрический критерий. Мощность критерия выше, чем у Q-критерия Розенбаума.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.

-Критерий Уилкоксона

Критерий предназначен для сопоставления показателей, измеренных в двух разных условиях на одной и той же выборке испытуемых. Он позволяет установить не только направленность изменений, но и их выраженность, то есть способен определить, является ли сдвиг показателей в одном направлении более интенсивным, чем в другом.

Критерий применим в тех случаях, когда признаки измерены, по крайней мере, в порядковой шкале. Целесообразно применять данный критерий, когда величина самих сдвигов варьирует в некотором диапазоне (10-15% от их величины). Это объясняется тем, что разброс значений сдвигов должен быть таким, чтобы появлялась возможность их ранжирования. В случае если сдвиги незначительно отличаются между собой, и принимают какие-то конечные значения, например. +1, -1 и 0, формальных препятствий к применению критерия нет, но, ввиду большого числа одинаковых рангов, ранжирование утрачивает смысл, и те же результаты проще было бы получить с помощью критерия знаков.

 

Суть метода состоит в том, что мы сопоставляем абсолютные величины выраженности сдвигов в том или ином направлении. Для этого сначала все абсолютные величины сдвигов ранжируются, а потом суммируются ранги. Если сдвиги в ту или иную сторону происходят случайно, то и суммы их рангов окажутся примерно равны. Если же интенсивность сдвигов в одну сторону больше, то сумма рангов абсолютных значений сдвигов в противоположную сторону будет значительно ниже, чем это могло бы быть при случайных изменениях.

 

Минимальное значение величины W= n(n+1)/2, где n-объём второй выборки. Максимальное значение величины W= n(n+1)/2 + mn, где n-объём второй выборки, m-объём первой выборки.

-Критерий Пирсона

Критерий согласия Пирсона (χ2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.

 

Использование критерия χ2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) nj для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.

 

Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.

 

Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой nj ≥ 2.

 

-Критерий Колмогорова-Смирнова

Одновыборочный критерий проверки нормальности Колмогорова-Смирнова основан на максимуме разности между кумулятивным распределением выборки и предполагаемым кумулятивным распределением:

 

 

Fn(x) - кумулятивное распределение выборки

 

F(x) - ожидаемое кумулятивное распределение (с известными параметрами)

 

Если D статистика Колмогорова-Смирнова значима, то гипотеза о том, что соответствующее распределение нормально, должна быть отвергнута.

 

Выводимые значения вероятности основаны на предположении, что среднее и стандартное отклонение нормального распределения известны априори и не оцениваются из данных.

 

Однако на практике обычно параметры вычисляются непосредственно из данных.

 

В этом случае критерий нормальности включает сложную гипотезу ("насколько вероятно получить D статистику данной или большей значимости, зависящей от среднего и стандартного отклонения, вычисленных из данных"), и приводятся вероятности Лиллиефорса (Lilliefors, 1967).

 

Заметим, что в последние годы предпочтительнее становится критерий нормальности Шапиро-Уилкса W.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)