АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пример применения метода авторегрессии

Читайте также:
  1. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  2. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  3. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  4. II. Документация как элемент метода бухгалтерского учета
  5. IХ. Примерный перечень вопросов к итоговой аттестации
  6. Адаптивные организационные структуры: достоинства, недостатки, особенности применения на практике
  7. Алгебраическое описание метода
  8. Алгоритм метода ветвей и границ
  9. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  10. Алгоритм управления запасами. Пример алгоритма с критическим уровнем.
  11. Аллергические реакции развиваются в независимости от дозы и длительности применения препаратов
  12. Анализ нестабильности условий деятельности фирм на примере «Apple»

 

Хотя уравнения авторегрессии AR (n) вычисляются и более эффективны для описания и прогнозирования стационарных процессов, данный метод также применим для нестационарных процессов, особенно, если не стационарность носит однородный характер.

На основе полученных в предыдущем примере данных при анализе PACF построим авторегрессионную модель AR (13). Для упрощения анализа сделаем допущение, что нарушена только одна предпосылка обычного метода наименьших квадратов – имеет место автокорреляция остатков высших порядков.

В данном случае воспользуемся встроенной в Gretl обобщённой процедурой Кохрейна-Оркотта (Generalizd Cochrane-Orcutt Iterative procedure) для оценки параметров модели AR (13). Для оценивания параметров с применением этого метода необходимо выбрать команду Model\Time series\Autoregressive estimation (рисунок 20).

 

Рисунок 20 – Построение модели авторегрессии

 

В открывшемся окне (рисунок 21) введём значения зависимой переменной (Dependent variable) – bezrob – при помощи кнопки Choose, перечислим лаги модели List of AR lags 1,2,12,13, которым cоответствуют значимые коэффициента частной автокорреляции (рассчитанные в предыдущем примере). В качестве объясняющих переменных введём лаговые значения зависимой переменной: bezrob-1, bezrob-2, bezrob-12, bezrob-13, нажав кнопку LAGS (рисунок 21). В появившемся окне флажками отметим опции Lags of dependent variable и Specific lags, введя лаги 1,2,12,13, нажмём кнопку ОК в обоих окнах.

 

Рисунок 21 – Спецификация авторегрессионной модели

По данным окна результатов моделирования (рисунок 22) отметим, что полученная модель является адекватной по F-критерию (p-value<0.05), влияние каждой лаговой переменной существенно по t-критерию (p-value<0.05) для уровня значимости 5%. Наличие больших значений лагов подтверждает существование выявленной ранее сезонной компоненты (длина цикла - год).

 

 

Рисунок 22 – Окно результатов моделирования с применением метода авторегрессии

Используем авторегрессионную модель для получения прогноза уровня безработицы в январе 2006 года. Для этого обратимся к команде Analysis\Forecasts окна результатов моделирования (рисунок 22). Выберем период 2006:1 и число наблюдений ряда 156 и нажмём кнопку ОК в открывшемся окне и получим прогнозное значение уровня безработицы 17.7878 (рисунок 23). Данный прогноз менее точен, чем полученный при прогнозировании с использованием модели полиномиального тренда четвёртого порядка, поскольку ряд не стационарен. Можно сделать вывод, что для случая нестационарных рядов данный метод необходимо сочетать с другими методами анализа, например с анализом тренда и т.д.

 

 

 

 

For 95% confidence intervals, t(137,.025) = 1.977

Obs наблюдение Bezrob уровень безработицы Prediction прогноз std. error Стандартная ошибка 95% confidence interval Доверительный интервал
2006:01 undefined 17.7878 0.277566 (17.2389, 18.3367)

 

Рисунок 23 – Прогнозирование временного ряда bezrob с использованием авторегрессионной модели


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)