|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Як визначається гетероскедастичність з допомогою регресії залишків?
Ще один тест для перевірки гетероскедастичності склав Глейсер. Він запропонував розглядати регресію абсолютних значень залишків , що відповідають регресії найменших квадратів, як певну функцію від , де — та незалежна змінна, яка відповідає зміні дисперсії . Для цього використовуються такі види функцій: 1) 2) 3) і т.ін. Рішення про відсутність гетероскедастичності залишків приймається на підставі статистичної значущості коефіцієнтів і . Переваги цього тесту визначаються можливістю розрізняти випадок чистої і замішаної гетероскедастичності. Чистій гетероскедастичності відповідають значення параметрів , а змішаній — . Залежно від цього треба користуватись різними матрицями S. Нагадаємо, що .
54. Опишіть методи формування матриці S в умові . Щоб оцінити параметри моделі, коли дисперсії залишків визначаються , потрібно визначити матрицю S. Спинимось на визначенні матриці S. оскільки явище гетероскедастичності пов’язане лише з тим, що змінюються дисперсії залишків, а коваріація між ними відсутня, то матриця S має бути діагональною, а саме: Щоб пояснити, чому саме такий вигляд має ця матриця, потрібно ще раз наголосити: за наявності гетероскедастичності для певних вихідних даних одна (або кілька) пояснювальних змінних можуть різко змінюватись від одного спостереження до іншого, тоді як залежна змінна має такі самі коливання, як і для попередніх спостережень. Але це означає, що дисперсія залишків, яка змінюватиметься від одного спостереження до іншого (чи для групи спостережень), може бути пропорційною до величини пояснювальної змінної X (або до її квадрата), яка зумовлює гетероскедастичність, або пропорційною до квадрата залишків. Звідси в матриці S значення можна обчислити, користуючись гіпотезами: а) , тобто дисперсія залишків пропорційна до зміни пояснювальної змінної ; б) , тобто зміна дисперсії пропорційна до зміни квадрата пояснювальної змінної (); в) , тобто дисперсія залишків пропорційна до зміни квадрата залишків за модулем. Для першої гіпотези: Для другої гіпотези: Для третьої гіпотези: або , або . Оскільки матриця S — симетрична і додатно визначена, то при , матриця P має вигляд:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |