АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Як використовується матриця S в методі Ейткена?

Читайте также:
  1. Б) система, яка використовується, коли продукт дуже складний, унікальний
  2. Визначення і класифікація методів стерилізації різальних, оптичних і загальхірургічних інструментів
  3. Використання фізіотерапевтичних методів
  4. Застосування інтерактивних методів
  5. Історія статистичних методів у мовознавстві.
  6. Класифікація методів добору.
  7. Класифікація методів творчого пошуку альтернативних варіантів. Характеристика найважливіших з них.
  8. Класифікація методів управлінського обліку, їх характеристика та оцінка для вирішення завдань контролінгу
  9. Мережа переважно використовується у біологічному моделюванні, проте існують деякі технічні застосування.
  10. Огляд нормативної та спеціальної літератури з питань обліку прострочених кредитів та методів боротьби з ними.
  11. Організаційна структура управління зед підприємства та її особливості в залежності від методів виходу на зовнішній ринок.
  12. Оцінювання конкурентоспроможності на основі матричних методів

Економетрична модель, якій притаманна гетероскедастичність, є узагальненою моделлю, і для оцінювання її параметрів слід скористатися узагальненим методом найменших квадратів. Розглянемо цей метод.

Нехай задано економетричну модель

(7.1)

коли .

Задача полягає в знаходженні оцінок елементів вектора А в моделі. Для цього використовується матриця S, за допомогою якої коригується вихідна інформація. Ця ідея була покладена в основу методу Ейткена.

Базуючись на особливостях матриць Р і S, які були розглянуті в підрозд. 7.3, можна записати співвідношення між цими матрицями та оберненими до них.

Оскільки S — додатно визначена матриця, то вона може бути зображена як добуток , де матриця P є невиродженою, тобто:

, (7.2)

коли

;(7.3)

і

.(7.4)

Помноживши рівняння (7.1) ліворуч на матрицю , дістанемо:

.(7.5)

Позначимо ;

;

.

Тоді модель матиме вигляд:

.(7.6)

Використовуючи (7.3), неважко показати, що

,

тобто модель (7.6) задовольняє умови (4.2), коли параметри моделі можна оцінити на основі 1МНК.

Звідси

. (7.7)

Ця оцінка є незміщеною лінійною оцінкою вектора А, який має найменшу дисперсію і матрицю коваріацій

(7.8)

Hезміщену оцінку для дисперсії можна дістати так:

(7.9)

Оцінка параметрів , яку знайдено за допомогою (7.7), є оцінкою узагальненого методу найменших квадратів (методу Ейткена).

При заданій матриці S оцінку параметрів моделі можна обчислити згід­но із (7.7), а стандартну помилку — згідно із (7.8). Тому можна сконструю­вати звичайні критерії значущості і довірчі інтервали для параметрів .

Визначивши залишки і помноживши ліворуч на матрицю , дістанемо:

,

або .

Звідси .

Тоді .

Оскільки

,

то (7.10)

Отже, ми розбили загальну суму квадратів для (7.6) на суму квадратів регресії і залишкову. Згідно з цими даними дисперсійний аналіз буде виконано для перетворених вихідних даних. Крім того, коли незалежна змінна виміряна відносно початку відліку, а не у формі відхилення від середньої, то необхідно визначити її середнє значення і скористатись ним для корекції загальної суми квадратів і суми квадратів регресії.

Модель узагальненого методу найменших квадратів іноді специфі­кується у вигляді

(7.11)

де — відома симетрична додатно визначена матриця. Тоді вираз для оцінки параметрів згідно з методом Ейткена запишеться так:

,(7.12)

а для її коваріаційної матриці

.(7.13)

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)