Кинетическая энергия тела при плоском движении
Плоским (плоскопараллельным) называется такое движение, при котором все точки тела движутся в параллельных плоскостях. Представим плоское движение тела как поступательное движение со скоростью , некоторой точки 0 в нем и вращения вокруг оси, проходящей через эту же точку и перпендикулярной с угловой скоростью .
В этом случае скорость i -той материальной точки тела определяется формулой
.
Кинетическая энергия i - той материальной точки равна
или
.
Просуммировав по всем материальным точкам, получим
или , (12)
где М - полная масса тела, - радиус-вектор центра масс, - момент инерции тела относительно оси, проходящей через точку О.
Если в качестве точки О взять центр масс тела С, то и формула (12) упрощается: . (13)
Таким образом, если разбить плоское движение тела на поступательное со
скоростью центра масс V c и вращательное с угловой скоростью w вокруг оси, проходящей через центр масс тела, то кинетическая энергия распадается на два независимых слагаемых, одно из которых определяется только скоростью центра масс V c, а другое - угловой скоростью w.
Из (13) следует, что при вращении тела относительно оси z, проходящей через центр масс С, его кинетическая энергия . (14) 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | Поиск по сайту:
|