АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Затухающие колебания

Читайте также:
  1. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  2. Вопрос№15 Механические колебания. Виды колебаний. Параметры колебаний движения
  3. Вынужденные колебания. Амплитудно- частотная характеристика. Природа резонанса.
  4. Вынужденные колебания. Расчёт амплитуды и фазы
  5. Вынужденные колебания. Резонанс.
  6. Вынужденные колебания.Векторная диаграмма.Резонанс
  7. Вынужденные механические колебания.
  8. Вынужденные электромагнитные колебания. Действующие значения силы тока и напряжения.
  9. Затухающие гармонические колебания. Коэффициент затухания и логарифмический декремент затухания. Время релаксации.
  10. Затухающие колебания
  11. Колебательный контур. Свободные электромагнитные колебания.

Во всякой реальной колебательной системе имеются силы сопротивления, действие которых приводит к уменьшению энергии системы. Если убыль энергии не восполняется за счет работы внешних сил, колебания будут затухать. В простейшем, и вместе с тем наиболее часто встречающемся, случае сила сопротивления пропорциональна величине скорости:

,

где r – постоянная величина, называемая коэффициентом сопротивления. Знак минус обусловлен тем, что сила и скорость имеют противоположные направления; следовательно, их проекции на ось X имеют разные знаки. Уравнение второго закона Ньютона при наличии сил сопротивления имеет вид:

.

Применив обозначения , , перепишем уравнение движения следующим образом:

.

Это уравнение описывает затухающие колебания системы. Коэффициент называется коэффициентом затухания.

Экспериментальный график затухающих колебаний при малом коэффициенте затухания представлен на рис. 7.6. Из рис. 7.6 видно, что график зависимости выглядит как косинус, умноженный на некоторую функцию, которая убывает со временем. Эта функция представлена на рисунке штриховыми линиями. Простой функцией, которая ведет себя подобным образом, является экспоненциальная функция . Поэтому решение можно записать в виде:

,

где – частота затухающих колебаний.

Величина x периодически проходит через нуль и бесконечное число раз достигает максимума и минимума. Промежуток времени между двумя последовательными прохождениями через нуль равен . Удвоенное его значение называется периодом колебаний.

Множитель , стоящий перед периодической функцией , называется амплитудой затухающих колебаний. Она экспоненциально убывает со временем. Скорость затухания определяется величиной . Время, по истечении которого амплитуда колебаний уменьшается в раз, называется временем затухания . За это время система совершает колебаний. Затухание колебаний принято характеризовать логарифмическим декрементом затухания. Логарифмическим декрементом затухания называется логарифм отношения амплитуд в моменты последовательных прохождений колеблющейся величины через максимум или минимум:

.

Он связан с числом колебаний соотношением:

.

Величина называется добротностью колебательной системы. Добротность тем выше, чем большее число колебаний успевает совершить система прежде, чем амплитуда уменьшится в раз.

Постоянные величины и , как и в случае гармонических колебаний, можно определить из начальных условий.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)