АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Капиллярные эффекты

Читайте также:
  1. Вискозиметры капиллярные и с падающим шариком.
  2. Внешние эффекты. Теорема Коуза.
  3. Внешние эффекты. Теорема Коуза.
  4. Звуковые эффекты.
  5. Капиллярность. Капиллярные явления в природе и технике.
  6. Капиллярные гемангиомы (простые)
  7. Классификация воздействий среды на здоровье по степени тяжести, времени воздействия, степени влияния. Экологически зависимые эффекты. Отдаленные эффекты. Пищевые цепи.
  8. Лекция 18. Внешние эффекты. Действия экономических субъектов в условиях неопределенности и риска
  9. Побочные эффекты.
  10. Поверхностное натяжение. Смачивание и несмачивание. Капиллярные явления
  11. Это не побочные эффекты.

Капиллярные явления - физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К капиллярным явлениям относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Dp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1 — p2 = 2s12/r, где (s12 — поверхностное натяжение на границе двух сред; p1 и p2 — давления в жидкости 1 и контактирующей с ней среде (фазе) 2. В случае вогнутой поверхности жидкости (r < 0) давление в ней понижено по сравнению с давлением в соседней фазе: p1 < p2 и Dp < 0. Для выпуклых поверхностей (r > 0) знак Dp меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела (r = ¥) такая составляющая отсутствует и Dp = 0.

Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).

Высота поднятия жидкости в капиллярной трубке h определяется уравновешиванием лапласовского и гидростатичесого давлений:

Высота подъёма (опускания) уровня жидкости в капилляре будет равна:

, где

· ρ - плотность жидкости

· σ - поверхностное натяжение

· R - радиус сферической формы мениска


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)