АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифракция Фраунгофера

Читайте также:
  1. I. Дифракция Фраунгофера на одной щели и определение ширины щели.
  2. III. Дифракция Фраунгофера на мелких круглых частицах.
  3. V3: Дифракция света
  4. Брегговская дифракция
  5. Вопрос 52 Дифракция света
  6. Вопрос№44 Интерференция и дифракция света
  7. ГЛАВА 7. Дифракция пЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ НА ИДЕАЛЬНО ПРОВОДЯЩЕМ ЦИЛИНДРЕ
  8. ГЛАВА 8. ДИФРАКЦИЯ Плоской электромагнитной волны на круглом ОТВЕРСТИи в идеально проводящем экране и на идеально проводящем диске
  9. ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР. РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ ДИФРАКЦИОННОЙ РЕШЕТКИ. ДИФРАКЦИЯ БРЭГГА. ДИФРАКЦИЯ НА МНОГИХ БЕСПОРЯДОЧНО РАСПОЛОЖЕННЫХ ПРЕГРАДАХ
  10. Дифракция
  11. Дифракция
  12. ДИФРАКЦИЯ

Если окажется, что расстояние от отверстия до точки наблюдения таково, что на отверстии укладывается менее одной зоны, то в точке Р будет всегда максимум, а вид дифракционной картины в плоскости экрана, перестает зависеть от величины . Из формулы (7.2) следует, что такой случай наблюдается, когда , т.е. когда

. (9.1)

В этом случае достаточно велико и можно считать, что лучи, идущие от крайних точек отверстия в точку M параллельны. Такая дифракция в "параллельных лучах" называется дифракцией Фраунгофера.

Таким образом, дифракция Фраунгофера наблюдается, когда источник света и точка наблюдения бесконечно удалены от препятствия вызывающего дифракцию. Фронт волны на препятствии при дифракции Фраунгофера представляет собой плоскость.

На примере дифракции на кольце (рис.9.1) можно проследить плавный переход от геометрической оптики (1-3) через дифракцию Френеля (4-7) к дифракции Фраунгофера (9-11).

 

 

Рис. 9.1. Границы дифракционных приближений. Дифракция на кольце. Число открытых зон уменьшается слева направо, при этом значение (дистанция Рэлея, условная граница между дифракциями Френеля и Фраунгофера) соответствует снимку 8.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)