|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Дифракционный интеграл ФренеляПринцип Гюйгенса-Френеля позволяет построить элементарную теорию дифракции света. Основная задача теории дифракции ставится так. Пусть имеется точечный источник света S. Требуется найти световое поле в некоторой точке Р, если между точками S и Р расположено препятствие распространению света, например экран с отверстием или непрозрачный диск. Сначала рассмотрим математическую формулировку принципа Гюйгенса-Френеля. Введем некоторую произвольную замкнутую поверхность
Рис. 2.1. К выводу интеграла Гюйгенса – Френеля
Принцип Гюйгенса-Френеля утверждает, что световое поле в точке
где
Здесь Интеграл (2.1) называют интегралом Гюйгенса-Френеля. Формула (2.1) получена на основе качественных физических соображений. Множитель Суть принципа Гюйгенса—Френеля записанная в (2.1) в следующем: для определения амплитуды колебания в точке Принцип Гюйгенса-Френеля можно представить в простой и наглядной форме с помощью векторной (фазовой) диаграммы (рис. 2.2). Использование подобных диаграмм в дальнейшем позволит значительно упростить многие рассуждения и расчеты. На этой диаграмме результирующая амплитуда - вектор
Рис. 2.2
Интеграл (2.1) выражает собой математическую формулировку принципа Гюйгенса-Френеля. Взяв этот интеграл можно рассчитать распределение амплитуды световой волны в плоскости наблюдения. Однако практически рассчитать это интеграл оказалось возможным только для самых простых случаев. Френель предложил хотя и приближенный, но изящный способ расчета дифракционных картин, основанный на представлении о так называемых полуволновых зонах или зонах Френеля. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.213 сек.) |