|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Форсирующее (идеальное) звено
Часто в литературе именуется как пропорционально-дифференцирующее. Выходная величина этого звена пропорциональна входной и производной от входной величины. Передаточная функция и основные частотные функции:
Звено характеризуется двумя параметрами: коэффициентом передачи k и постоянной дифференцирования t. В начальный момент времени переходная характеристика, как и у идеального дифференцирующего звена, должна иметь скачок бесконечной амплитуды. ЛФЧХ форсирующего звена точно такая же, как и у апериодического, только фаза имеет положительные значения. Низкочастотные асимптоты ЛАЧХ форсирующего и апериодического звеньев совпадают, но высокочастотная асимптота ЛАЧХ форсирующего звена имеет наклон плюс 20 дБ/дек. Сопрягающая частота . Логарифмические частотные характеристики форсирующего звена приведены на рис. 2.16
G(w) j(w)
Рис. 2.16
Звенья второго порядка. В общем случае описываются уравнением Перейдем к изображениям по Лапласу: Отсюда определяем передаточную функцию: Однако общепринята запись передаточной функции звеньев второго порядка в другом виде: где Звенья второго порядка, таким образом, характеризуются тремя параметрами. Это коэффициент передачи, постоянная времени и коэффициент демпфирования x. В зависимости от величины коэффициента демпфирования различают типы звеньев: колебательное (0<x<1), консервативное (x=0) и апериодическое второго порядка (x³1). Рассмотрим свойства колебательного звена. Выражения для его частотных функций имеют следующий вид:
Асимптотическая ЛАЧХ строится тем же приемом, что и для апериодического звена. В области низких частот Tw<<1 и в подкоренном выражении всеми членами, кроме 1, можно пренебречь. Тогда низкочастотная асимптота G(w)нч принимает вид G(w)нч»20lgk. В области высоких частот ( и в подкоренном выражении можно оставить лишь , пренебрегая остальными членами. Высокочастотная асимптота G(w)вч описывается формулой: G(w)вч»20lgk-20lg(Tw)2=20lgk-40lgTw. Эта асимптота имеет наклон минус 40 дБ/дек. Сопрягаются асимптоты на частоте , как показано на рис.2.17. G(w) Точная ЛАЧХ
Асимптотическая ЛАЧХ 20lgk -40 дБ/дек
0 lgw lg 1/T
j(w) Рис.2.17
Точная ЛАЧХ несколько отличается от асимптотической . Максимальная ошибка - в районе около сопрягающей частоты. Для упрощенных расчетов можно считать, что наибольшая ошибка будет при : В районе точная ЛАЧХ идет ниже асимптотической при и выше - при . При значениях ошибка становится существенной (более трех децибел) и ее необходимо учитывать, используя приведенную выше формулу либо поправочные кривые из справочной литературы. Представление о динамических свойствах звена можно получить из переходной характеристики, представленной на рис.2.18. Мое примечание. Из формулы, определяющей ошибку (δ),видно, что она становится равной 0 при ξ=0,5; при ξ=1 δ=-6 дБ, при ξ=0,7 δ=-3 дБ, при ξ=0,4 δ=2дБ, при ξ=0,2 δ=8дБ, при ξ=0,1 δ=14 дБ.
h(t)
k
0 t Рис.2.18
Примером звена второго порядка может служить колебательный контур (см. схему на рис.2.5 и вывод передаточной функции в примере 2.4). Консервативное звено - частный случай колебательного звена, когда отсутствует демпфирование. Если обратиться к приведенному выше примеру (см. рис.2.5), то должны отсутствовать потери в контуре (выполняться условие R=0). В этом случае колебания стали бы незатухающими, и переходная характеристика описывалась бы выражением: На сопрягающей частоте ЛАЧХ консервативного звена имеет всплеск бесконечной амплитуды, т.е. претерпевает разрыв, а ЛФЧХ из нулевого значения скачком достигает значения минус p. При x ³ 1 передаточную функцию звена второго порядка можно преобразовать следующим образом: где То есть апериодическое звено второго порядка не является типовым или элементарным, так как его можно представить двумя последовательно соединенными более простыми звеньями - апериодическими первого порядка. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |