|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Передаточная функцияЦелью рассмотрения САУ может быть решение одной из двух задач: задачи анализа или задачи синтеза. Но в любом случае порядок исследования САУ включает в себя следующие этапы: математическое описание, исследование установившихся режимов, исследование переходных режимов. Рассмотрим случай, когда в замкнутой системе можно выделить объект О и управляющее устройство УУ, как показано на рис.2.1.
f(t)
g(t) e(t) y(t) x(t) УУ О
Рис.2.1 Общее уравнение САУ получается из системы уравнений объекта и управляющего устройства. Состояние объекта характеризуется выходной величиной x(t), регулирующим воздействием y(t) и возмущением f(t). Тогда выходная величина может быть представлена функцией: Состояние управляющего устройства характеризуется регулирующим воздействием y(t) и входным воздействием e(t). Процессы в УУ будут описываться двумя уравнениями: Три последних уравнения полностью описывают процессы в САУ. Если в этих уравнениях исключить переменные y(t) и e(t), то получим дифференциальное уравнение САУ: Это уравнение оценивает состояние системы во времени, определяет переходные процессы и обычно называется уравнением динамики. Однако в форме дифференциальных уравнений математическое описание в теории автоматического управления обычно не применяется вследствие сложности решения таких уравнений. Исследование САУ существенно упрощается при использовании прикладных математических методов операционного исчисления. Возьмем некоторый элемент САУ, имеющий один вход и один выход. Дифференциальное уравнение элемента в общем случае имеет вид:
Если в уравнение (2.1) вместо функции времени и ввести функции и комплексного переменного р, поставив условием, что эти функции связаны зависимостями: (2.2) то оказывается, что дифференциальное уравнение, содержащее функции и , при нулевых начальных условиях равносильно линейному алгебраическому уравнению, содержащему функции и : (2.3) Такой переход от дифференциального уравнения к однозначно соответствующему ему алгебраическому уравнению называется преобразованием Лапласа. Функция называется изображением функции , функция называется оригиналом функции . Операция перехода от искомой функции к ее изображению (нахождение изображения от оригинала) называется прямым преобразованием Лапласа и записывается условно с помощью символа L как Операция перехода от изображения к искомой функции (нахождение оригинала по изображению) называется обратным преобразованием Лапласа и записывается условно с помощью символа как Формально переход от дифференциального уравнения к алгебраическому относительно изображения при нулевых начальных условиях получается путем замены символов дифференцирования оригиналов функций , соответственно на и функций - их изображениями . С комплексной переменной , как и с другими членами алгебраического уравнения, можно производить различные действия: умножение, деление, вынесение за скобки и т.д. Так как возможность однозначного перехода от дифференциального уравнения к алгебраическому значительно упрощает расчеты, то важно убедиться в правомерности такого перехода. Обозначим в исходном дифференциальном уравнении и согласно интегралу (2.2) найдем изображение: Согласно правилу интегрирования по частям
= При нулевых начальных условиях и с учетом (2.2) получим: Таким образом, операция дифференцирования оригинала соответствует операции умножения изображения этого оригинала на комплексное число . Так как то и т.д. Каждый элемент САУ в общем случае описывается дифференциальным уравнением вида (2.1). Следовательно, при выводе дифференциального уравнения системы в целом необходимо совместно решить несколько дифференциальных уравнений высших порядков. Преобразование дифференциальных уравнений по Лапласу позволяет свести эту задачу к решению системы алгебраических уравнений. Определив из алгебраических уравнений изображение искомой функции , определяющей переходной процесс в системе, находят эту функцию, пользуясь таблицами оригиналов и изображений или по известным формулам обратного преобразования Лапласа. Кроме того, преобразование дифференциального уравнения по Лапласу дает возможность ввести понятие передаточной функции. Вынеся в уравнении (2.3) и за скобки, получим: Определим из этого уравнения отношение изображения выходной величины к изображению входной: (2.4) Отношение изображения выходной величины элемента (или системы) к изображению его входной величины при нулевых начальных условиях называется передаточной функцией элемента (или системы). Передаточная функция W(p) является дробно-рациональной функцией комплексной переменной р: где - полином степени n, - полином степени m. Из определения передаточной функции следует, что: Передаточная функция является основной формой математического описания объектов в теории автоматического управления и так как она полностью определяет динамические свойства объекта, то первоначальная задача расчета САУ сводится к определению передаточной функции. Рассмотрим примеры по определению передаточной функций некоторых простейших схем, характерных для электроники.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |