|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Передаточная функцияЦелью рассмотрения САУ может быть решение одной из двух задач: задачи анализа или задачи синтеза. Но в любом случае порядок исследования САУ включает в себя следующие этапы: математическое описание, исследование установившихся режимов, исследование переходных режимов. Рассмотрим случай, когда в замкнутой системе можно выделить объект О и управляющее устройство УУ, как показано на рис.2.1.
g(t) e(t) y(t) x(t) УУ О
Рис.2.1 Общее уравнение САУ получается из системы уравнений объекта и управляющего устройства. Состояние объекта характеризуется выходной величиной x(t), регулирующим воздействием y(t) и возмущением f(t). Тогда выходная величина может быть представлена функцией: Состояние управляющего устройства характеризуется регулирующим воздействием y(t) и входным воздействием e(t). Процессы в УУ будут описываться двумя уравнениями: Три последних уравнения полностью описывают процессы в САУ. Если в этих уравнениях исключить переменные y(t) и e(t), то получим дифференциальное уравнение САУ: Это уравнение оценивает состояние системы во времени, определяет переходные процессы и обычно называется уравнением динамики. Однако в форме дифференциальных уравнений математическое описание в теории автоматического управления обычно не применяется вследствие сложности решения таких уравнений. Исследование САУ существенно упрощается при использовании прикладных математических методов операционного исчисления. Возьмем некоторый элемент САУ, имеющий один вход и один выход. Дифференциальное уравнение элемента в общем случае имеет вид:
Если в уравнение (2.1) вместо функции времени
то оказывается, что дифференциальное уравнение, содержащее функции
Такой переход от дифференциального уравнения к однозначно соответствующему ему алгебраическому уравнению называется преобразованием Лапласа. Функция Операция перехода от искомой функции Операция перехода от изображения Формально переход от дифференциального уравнения к алгебраическому относительно изображения при нулевых начальных условиях получается путем замены символов дифференцирования оригиналов функций Так как возможность однозначного перехода от дифференциального уравнения к алгебраическому значительно упрощает расчеты, то важно убедиться в правомерности такого перехода. Обозначим в исходном дифференциальном уравнении Согласно правилу интегрирования по частям
= При нулевых начальных условиях Таким образом, операция дифференцирования оригинала соответствует операции умножения изображения этого оригинала на комплексное число Так как
Каждый элемент САУ в общем случае описывается дифференциальным уравнением вида (2.1). Следовательно, при выводе дифференциального уравнения системы в целом необходимо совместно решить несколько дифференциальных уравнений высших порядков. Преобразование дифференциальных уравнений по Лапласу позволяет свести эту задачу к решению системы алгебраических уравнений. Определив из алгебраических уравнений изображение Кроме того, преобразование дифференциального уравнения по Лапласу дает возможность ввести понятие передаточной функции. Вынеся в уравнении (2.3) Определим из этого уравнения отношение изображения выходной величины к изображению входной:
Отношение изображения выходной величины элемента (или системы) к изображению его входной величины при нулевых начальных условиях называется передаточной функцией элемента (или системы). Передаточная функция W(p) является дробно-рациональной функцией комплексной переменной р: где
Из определения передаточной функции следует, что: Передаточная функция является основной формой математического описания объектов в теории автоматического управления и так как она полностью определяет динамические свойства объекта, то первоначальная задача расчета САУ сводится к определению передаточной функции. Рассмотрим примеры по определению передаточной функций некоторых простейших схем, характерных для электроники.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |