|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Идеальный контур как модель реального колебательного контураРеальный контур состоит из катушки индуктивности и конденсатора. Реальная катушка не может считаться только индуктивностью, которая накапливает магнитную энергию. Во-первых, провод обладает конечной проводимостью, во-вторых, между витками накапливается электрическая энергия, т.е. имеет место межвитковая ёмкость. То же самое можно сказать и о емкости. Реальная емкость помимо самой емкости будет иметь в своем составе индуктивности выводов и сопротивление потерь. Для упрощения задачи рассмотрим модель реального колебательного контура с катушкой индуктивности состоящей всего из двух витков. Эквивалентная схема будет иметь вид, приведённый на рисунке на рис. 4. ( и - индуктивность и сопротивление одного витка, - межвитковая ёмкость). Правая часть схемы описывает реальный конденсатор. Выводы конденсатора обладают паразитной индуктивностью , а среда между пластинами обладает потерями, что отражает проводимость . Нетрудно заметить, что такая электрическая схема является довольно сложной. Число контурных токов (т.е. независимых координат, или степеней свободы) равно 5. Следует также отметить, что реальные колебательные контура имеют катушки индуктивности с числом витков от десятков до нескольких сотен. Однако, как показывает опыт радиоинженера, в большинстве случаев нет необходимости эту сложную схему. В умеренно высокочастотном диапазоне межвитковые ёмкости и паразитная индуктивность в силу своей малости практически роли не играют и ими можно пренебречь (, ). Если не учитывать потери (, ), то получаем математическую модель, известную как «идеальный контур» (Рис.5). Его движение описывается одной переменной, в качестве которой возьмём заряд на ёмкости. Уравнение для электрической цепи, изображенной на рис. 5 получим на основе закона Кирхгофа. Используем второе правило: сумма падений напряжений на элементах контура равна алгебраической сумме внешних ЭДС, включенных в этот контур. В нашем случае ЭДС равна нулю, и получим: (В.12) Разделим слагаемые на и обозначим (В.13) Уравнение для идеального контура примет вид: (В.14) Имея модели двух динамических систем, можно уже сделать некоторые выводы. Простое сравнение уравнений (В.6) и (В.9) показывает, что маятник при малых отклонениях и идеальный контур описываются одним и тем же уравнением, известным как уравнение гармонического осциллятора, которое в стандартной форме имеет вид: (В.15) Следовательно, и маятник, и контур как колебательные системы обладают одинаковыми свойствами. Это и есть проявление единства колебательных систем. Имея эти модели, уравнения, их описывающие, и обобщая полученные результаты, дадим классификацию динамических систем по виду дифференциального уравнения. Системы бывают линейные и нелинейные. Линейные системы описываются линейными уравнениями (см. (В.11) и (В.15)). Нелинейные системы описываются нелинейными уравнениями (например, уравнение математического маятника (В.9)). Другим признаком классификации является число степеней свободы. Формальным признаком служит порядок дифференциального уравнения, описывающего движение в системе. Система с одной степенью свободы описывается уравнением 2-го порядка (или двумя уравнениями первого порядка); система с N степенями свободы описывается уравнением или системой уравнений порядка 2N. В зависимости от того как изменяется энергия колебательного движения в системе, все системы делятся на два класса: консервативные системы – те, у которых энергия остаётся неизменной, и неконсервативные системы – те, у которых энергия изменяется с течением времени. В системе с потерями энергия убывает, однако возможны случаи, когда энергия возрастает. Такие системы называются активными. Динамическая система может подвергаться и не подвергаться внешнему воздействию. В зависимости от этого различают четыре типа движения. 1. Собственные, или свободные колебания, системы. В этом случае от внешнего источника система получает конечный запас энергии и источник отключается. Движение системы при конечном начальном запасе энергии и представляет собственные колебания. 2. Вынужденные колебания. Система находится под действием внешнего периодического источника. Источник оказывает «силовое» воздействие, т.е. природа источника та же, что и у динамической системы (в механической системе – источник силы, в электрической – ЭДС и т.д.). Колебания обусловленные внешним источником, называются вынужденными. При отключении они исчезают. 3. Параметрические колебания наблюдаются в системах, у которых периодически во времени изменяется какой-либо параметр, например, ёмкость в контуре или длина маятника. Природа внешнего источника который, изменяет параметр, может отличаться от природы самой системы. Например, ёмкость можно изменять механически. Нужно отметить, что строгое разделение вынужденных и параметрических колебаний возможно лишь для линейных систем. 4. Особый вид движения – автоколебания. Термин впервые введён академиком Андроновым. Автоколебание – это периодическое колебание, период, форма и амплитуда которого зависят от внутреннего состояния системы и не зависят от начальных условий. С энергетической точки зрения автоколебательные системы являются преобразователями энергии некоторого источника в энергию периодических колебаний.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |