АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Производная сложной функции

Читайте также:
  1. А кто есть человек, как биологическое существо в этой сложной пищевой цепи?
  2. Абсолютные и относительные ссылки. Стандартные формулы и функции. Логические функции
  3. Бесконечно малые функции.
  4. Волокнистая соединительная ткань. Морфо-функциональная характеристика. Классификация. Клеточные элементы: происхождение, строение, функции.
  5. Выделяют базисные, ключевые и поддерживающие функции.
  6. Геометрический, физический и экономический смысл производной функции.
  7. Глаз. Источники развития. Стенки глаза. Аккомадационный аппарат глаза. Строение и функции.
  8. ГОСУДАРСТВО: ОПРЕДЕЛЕНИЕ, ПРИЗНАКИ, ФУНКЦИИ.
  9. Два вида костной ткани, клетки и межклеточное вещество, функции.
  10. Для любой ли функции существует производная?
  11. Достаточные признаки монотонности функции.
  12. Жгутики: химический состав, строение, расположение и основные функции.

ДИФФЕРНЦИРОВАНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ.

Производной данной функции по аргументу назывется предел отношения приращения функции к приращению аргумента , когда последнее произвольным образом стремится к нулю:

Операция нахождения производной от функции называется дифференцированием этой функции.

 

Правила дифференцирования.

Если и являются дифференцируемыми функциями аргумента , то:

(1)

(2)

(3)

(4)

(5)

Таблица производных элементарных функций:

  Функция Производная функции
1.
2.
  3.  
4.
5.
  6.  
  7.  
  8.  
  9.  
  10.  
   
 
13.
  14.  
  15.  

Задания 1. Найти производные функции:

1.   2.
3. 4.
5. 6.
7. 8.
9. 10. .
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.

Производная сложной функции.

Если и являются дифференцируемыми функциями своих аргументов, то производная сложной функции существует и равна произведению производной данной функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной:

(6)

В случае , , :

 

(7)

Аналогично во всех более сложных случаях.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)