АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пример 18

Читайте также:
  1. II.Примерная тематика курсовых работ
  2. SWОT – анализ - пример
  3. Анализ реализации функций системы самоменеджмента на предприятии (на примере ООО «ХХХ»)
  4. Анализ рынка недвижимости на примере многоквартирного жилья в г Пермь
  5. Аналогичный ему по строению дикаин, примерно в 10 раз активнее кокаина. Сейчас широко применяются более сложные по структуре соединения (например, анилид тримекаин).
  6. В качестве примера рассмотрим один клинический случай.
  7. В Трудовом кодексе найдите примеры (не менее 10), иллюстрирующие реализацию принципов трудового права. Подберите решения Конституционного суда РФ, основанные на этих принципах.
  8. Величины всех парциальных давлений р и барометрического давления В в формулах (51-52) должны иметь одинаковую размерность (например бар или Па).
  9. Включите в каждую колонку таблицы по 2-3 собственных примера. Ответ аргументируйте.
  10. Второй пример.
  11. Входные данные примерной, авторской программы.
  12. Глава II. Пример взаимоотношений человека и группы в туристском предприятии «Стар-Тревел»

Написать уравнения касательной и нормали, длины касательной и подкасательной, длины нормали и поднормали для эллипса

в точке , для которой .

Решение:

Найдем как производную функции, заданной параметрически по формуле (10):

Найдем координаты точки касания : и значение производной в точке касания :

 

Уравнение касательной найдем по формуле (34):

Найдем координаты точки пересечения касательной с осью :

Длина касательной равна длине отрезка :

Согласно определению, подкасательная равна

Где угол – угол между касательной и осью . Поэтому, - угловой коэффициент касательной, равный

Таким образом, подкасательная равна

Уравнение нормали найдем по формуле (35):

Найдем координаты точки пересечения нормали с осью :

Длина нормали равна длине отрезка :

Согласно определению, поднормаль равна

 

Где угол – угол между нормалью и осью . Поэтому, - угловой коэффициент нормали, равный

Поэтому, поднормаль равна:

Ответ: Уравнение касательной:

 

Уравнение нормали:

Длина касательной ; подкасательная ;

Длина нормали ; поднормаль

 

Задания 7. Написать уравнения касательной и нормали:

1. К параболе в точке, абсцисса которой

.

2. К окружности в точках пересечения её с осью абсцисс

.

3. К циклоиде в точке, для которой

.

4. В каких точках кривой касательная параллельна:

а) оси Оx; б) прямой

.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)