АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обчислення. Приклад 12. Платформа у вигляді суцільного диску радіусом 1,5 м і масою 180 кг обертається біля вертикальної осі з частотою 10 об/хв

Читайте также:
  1. Обчислення.
  2. Обчислення.
  3. Обчислення.
  4. Обчислення.
  5. Обчислення.
  6. Обчислення.
  7. Обчислення.
  8. Обчислення.
  9. Обчислення.
  10. Обчислення.
  11. Обчислення.
  12. Обчислення.

= 2,88 м/с2.

Відповідь: a = 2,88 м/с2.

 

Приклад 12. Платформа у вигляді суцільного диску радіусом 1,5 м і масою 180 кг обертається біля вертикальної осі з частотою 10 об/хв. У центрі платформи стоїть людина масою 60 кг. Яку лінійну швидкість щодо підлоги приміщення буде мати людина, якщо вона перейде на край платформи?

Дано: m 1 = 180 кг; m 2 = 60 кг; n 1 = 10 об/хв = 1/6 об/с; R = 1,5 м;
r = 0.

Знайти: .

Розв’язок. Відповідно до умови задачі момент зовнішніх сил відносно осі обертання, що збігається з геометричною віссю платформи, можна вважати рівним нулю. За цієї умови діє закон збереження моменту імпульсу системи «платформа – людина»

. (1)

Тут L і – відповідно моменти імпульсу системи у вихідному й у кінцевому станах, для яких можна записати такі вирази

; (2)

. (3)

У цих виразах прийнято такі позначення: J 1 і J 2 – моменти інерції платформи і людини у початковому стані; і – у кінцевому стані, відповідно; і – кутова швидкість обертання платформи у початковому й у кінцевому станах.

Кутову швидкість можна виразити через частоту обертання n, а величину пов’язати з пошукуваною кінцевою лінійною швидкістю людини

. (4)

. (5)

Зауважимо, що, відповідно до умови задачі, момент інерції платформи не змінюється, а для моменту інерції людини застосовною, є формула моменту інерції матеріальної точки

; (6)

; (7 a)

(7 б)

Тепер можна підставити вираження (2) і (3) у (1), використовуючи (4), (6) і (7). В результаті, приймаючи до уваги, що r = 0, а , можна одержати

. (8)

Остаточну формулу одержимо, підставляючи отриманий вираз у вираз (5)

. (9)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)