|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Обчислення. Приклад 12. Платформа у вигляді суцільного диску радіусом 1,5 м і масою 180 кг обертається біля вертикальної осі з частотою 10 об/хв
= 2,88 м/с2. Відповідь: a = 2,88 м/с2.
Приклад 12. Платформа у вигляді суцільного диску радіусом 1,5 м і масою 180 кг обертається біля вертикальної осі з частотою 10 об/хв. У центрі платформи стоїть людина масою 60 кг. Яку лінійну швидкість щодо підлоги приміщення буде мати людина, якщо вона перейде на край платформи? Дано: m 1 = 180 кг; m 2 = 60 кг; n 1 = 10 об/хв = 1/6 об/с; R = 1,5 м; Знайти: . Розв’язок. Відповідно до умови задачі момент зовнішніх сил відносно осі обертання, що збігається з геометричною віссю платформи, можна вважати рівним нулю. За цієї умови діє закон збереження моменту імпульсу системи «платформа – людина» . (1) Тут L і – відповідно моменти імпульсу системи у вихідному й у кінцевому станах, для яких можна записати такі вирази ; (2) . (3) У цих виразах прийнято такі позначення: J 1 і J 2 – моменти інерції платформи і людини у початковому стані; і – у кінцевому стані, відповідно; і – кутова швидкість обертання платформи у початковому й у кінцевому станах. Кутову швидкість можна виразити через частоту обертання n, а величину пов’язати з пошукуваною кінцевою лінійною швидкістю людини . (4) . (5) Зауважимо, що, відповідно до умови задачі, момент інерції платформи не змінюється, а для моменту інерції людини застосовною, є формула моменту інерції матеріальної точки ; (6) ; (7 a) (7 б) Тепер можна підставити вираження (2) і (3) у (1), використовуючи (4), (6) і (7). В результаті, приймаючи до уваги, що r = 0, а , можна одержати . (8) Остаточну формулу одержимо, підставляючи отриманий вираз у вираз (5) . (9) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |