Исследовать на линейную зависимость систему векторов
Чтобы проверить является ли система векторов линейно-зависимой, необходимо составить линейную комбинацию этих векторов , и проверить, может ли она быть рана нулю, если хот один коэффициент равен нулю.
Случай 1. Система векторов заданна векторами
Составляем линейную комбинацию
Мы получили однородную систему уравнений. Если она имеет ненулевое решение, то определитель должен быть равен нулю. Составим определитель и найдём его значение.
Определитель равен нулю, следовательно, вектора линейно зависимы.
Случай 2. Система векторов заданна аналитическими функциями:
a) , если тождество верно, значит система линейно зависима.
Составим линейную комбинацию.
Необходимо проверить, существуют ли такие a, b, c (хотя бы одна из которых не равна нулю) при которых данное выражение равно нулю.
Запишем гиперболические функции
, , тогда
,
тогда линейная комбинация векторов примет вид:
, откуда , возьмём, например, , тогда линейная комбинация равна нулю, следовательно, система линейно зависима.
Ответ: система линейно зависима.
b) , составим линейную комбинацию
Линейная комбинация векторов, должна быть равна нулю для любых значений x.
Проверим для частных случаев.
Линейная комбинация векторов равна нулю, только если все коэффициенты равны нулю.
Следовательно, система линейно не зависима.
Ответ: система линейно не зависима.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Поиск по сайту:
|