|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Якщо к спільний дільник чисел a,b,(modm) то обидві частини і mod можна поділити на дане число к
Озн: Якщо з кожного класу лишків взяти по одному представнику, то одержана множина лишків називається повною системою лишків(ПСЛ). Числа класів називаються лишками. ПСННЛ={0,1,2,3,4,5,6} Властивість: Теорема про ПСЛ: Якщо a,m взаємно прості НСД(a,m)=1 і b будь-яке ціле число,то якщо х пробігає ПСЛ, то ах+b також пробігає ПСЛ. Доведення: Нехай є ПСЛ за тоді покажемо, що ця множина чисел утворює повну систему лишків. Ця система містить m чисел: покажемо що числа цієї множини не порівнюються між собою за (modm).Припустимо від супротивного: так як а взаємно прості то а це суперечить умові теореми.А значить наше припущення вірне.Множина лишків,які належать різним класам і які взаємо прості з (modm)називають зведеною системою лишків(ЗСЛ).Як правило ЗСЛ ємножина найменших невід’ємних лишків.Очевидно,що ЗСЛ за (modm)містить -лишків, -функйія Ейлера. Якщо a,m прості і х пробігає ЗСЛ,то і ах також пробігає ЗСЛ.НСД(a,m)=1. Покажемо, що ці числа не порівнюються між собою за (modm).Припустимо, що Це суперечить означенню ЗСЛ. Теорема Ейлера: Якщо am взаємно прості. . Доведення: Розглянути ЗСЛ(modm)={ }тоді згідно теореми про ЗСЛ множина також буде зведеною системою лишків. . Очевидно, що лишок з одним із лишків . Тоді . Очевидно, що лишки попарно прості. А значить обидві частини останнього порівняння можна скоротити. . Теорема Ферма: є частковим випадком теореми Ейлера,якщо m просте число;m=p;φ(p)=p-1. .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |