АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Лінійні оператори. Власні значення та власні вектори лінійного оператора.(немаєпро лінійні оператори)

Читайте также:
  1. XIV. 7. Вимірювання електрорушійних сил. Застосування методу вимірювання ЕРС для визначення різних фізико – хімічних величин
  2. А) Означення множини. Операції над множинами
  3. Автоматизоване робоче місце бухгалтера (АРМБ): призначення, функції та його рівні.
  4. Автоматизоване робоче місце бухгалтера (АРМБ): призначення, функції та його рівні.
  5. Автомобільні транспортні засоби за своїм призначенням
  6. Аналогічно обчислюють значення по інших позиціях.
  7. Аналогічно обчислюють значення по інших позиціях.
  8. Бази даних, їх призначення та основні елементи.
  9. Бази знань та їх призначення
  10. Біржова торгівля. Товарна та фондова біржа, їх функції та значення
  11. Блок визначення мінімального або максимального значення MinMax
  12. Будова полісахаридів, поширення у природі та значення

Означення Ненульовий вектор u простору V називається власним вектором лінійного оператора А, якщо Аu = и для деякого елемента . Елемент при цьому називається власним значенням оператора А, що відповідає власному вектору u. Говорять також, що власний вектор u належить власному значенню .

Якщо u - власний вектор лінійного оператора А, то існує єдиний елемент такий, що Аu= . Справді, якщо , то . Далі, якщо u – власний вектор оператора А, що належить власному значенню , то для довільного ненульового елемента з поля Р вектор теж є власним вектором оператора А, який належить тому самому власному значенню . Справді . Отже, кожний власний вектор оператора А породжує в просторі V одновимірний інваріантний підпростір, всі ненульові вектори якого є власними векторами оператора А, що належать одному і тому ж власному значенню. Таким чином, задача знаходження інваріантних відносно оператора А одновимірних підпросторів простору V рівносильна відшуканню власних векторів оператора А

Теорема1. Власні вектори лінійного оператора А, які належать попарно різним власним значенням , утворюють лінійно незалежну систему.

З теореми випливає, що коли лінійний оператор А n-вимірного векторного простору V має n попарно різних власних значень, то власні вектори оператора А, що належать цим власним значенням, взяті по одному для кожного значення, утворюють базис простору V. У базисі, складеному з власних векторів оператора А, матриця оператора А має надзвичайно простий вигляд, а саме, вона є діагональною, причому її діагональними елементами є власні значення, яким належать базисні вектори. Справді, якщо базисні
вектори є власними векторами оператора А, що належать власним значенням відповідно, то , ,… тому матриця оператора А в базисі є діагональною матрицею: A= (по діагоналі ).

Теорема 2. Діагональна матриця А є матрицею лінійного оператора А в деякому базисі векторного простору V тоді і тільки тоді, коли базисні вектори є власними векторами оператора А, що належать власним значенням .

Нехай А - лінійний оператор векторного простору V і А = () - його матриця в деякому базисі е = { } простору V. Якщо u -власний вектор оператора А, що належить власному значенню , і () - його координатний рядок в базисі е, тобто u = x1e1+...+xnen, то

. Розписавши цю матричну рівність покомпонентно, отримаємо систему лінійних рівнянь відносно змінних :

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)