|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
КIНЕМАТИКА
Кiнематика — роздiл механiки, в якому вивчається рух тiл, не встановлюючи причин, що викликали цей рух. Сам термiн походить вiд грецького слова „кiнета”, що означає рух. За законами i залежностями, встановленими в кiнематицi, визначаються параметри польоту лiтальних апаратiв, виконуються розрахунки передач рухiв у рiзних авiацiйних механiзмах та iн. 1.1. Механiчний рух. Система вiдлiку Механiчним рухом називається змiна положення тiла в просторi вiдносно iнших тiл. Це все свідчить, що механiчний рух є вiдносним. Дiйсно, будь-яке тiло може бути нерухомим вiдносно одних тiл i рухається вiдносно iнших. Разом з тим цей рух є абсолютним, оскiльки завжди можна вказати, таке тiло, вiдносно якого дане „нерухоме” тiло рухається, тобто абсолютно нерухомих тiл в природi не iснує. Отже, починаючи дослiджувати рух якогось тiла, слід визначити, вiдносно якого iншого тiла вiн буде розглядатися. Тiло, вiдносно якого розглядається рух, називається тiлом вiдлiку. Для математичного описування руху з тiлом вiдлiку необхiдно зв’язати систему координат. Як вiдомо, iснує багато рiзних систем координат (полярна, цилiндрична, сферична та iн.). Найбiльш поширеною є прямокутна декартова система координат. Слiд звернути увагу, що iснують два види декартових систем: права (рис. 1.1) та лiва (рис.1.2), якi розрiзняють за допомогою правила гвинта: якщо обертати ручку гвинта вiд додатнього кiнця осi ОХ до додатнього кiнця осi ОУ, то в правiй системi координат гвинт буде поступально рухатись у додатньому напрямку осi ОZ, а в лiвiй системi — у вiд’ємному напрямку. У фiзицi здебiльшого застосовується права система. Перемiщення тiл вiдбувається з плином часу, тому для описування руху слід мати також годинник. Тiло вiдлiку, повязана з ним система координат та годинник становлять систему вiдлiку. 1.2. Способи описування руху матерiальноiї точки. Основна (пряма) задача кінематик Важливо зазначити, що в класичнiй механiцi загальновизначеною є концепцiя простору i часу, розроблена Ньютоном. Вiдповiдно до цiєї концепцiї простiр i час розглядаються як такi, що не пов’язанi нi мiж собою, нi з рухом тiл. Iншими словами, в класичнiй механiцi простiр i час вважаються абсолютними та iснуючими не залежно один вiд одного. Тому i хiд годинникiв (тобто плин часу) не залежить вiд системи вiдлiку i всюди є однаковим. Розглянемо спочатку рух найпростiшого об’єкту — матерiальної точки. Визначимо деякi поняття, якi використовують пiд час описування цього руху. Траєкторiя — це уявна лiнiя, вздовж якої рухається матеріальна точка (рис. 1.3). Шлях (∆S або S) — це довжина траєкторiї (рис. 1.3). Шлях — величина скалярна, в системi СІ вимiрюється в метрах (м). Перемiщення ∆r — це найкоротша вiдстань мiж початковою i кiнцевою точками траєкторїi (рис. 1.4). Перемiщення — величина векторна, має напрямок вiд початковоїi до кiнцевої точки траєкторiї; в системi СІ вимiрюється в метрах. У декартовiй системi координат положення матерiальної точки М може бути задане не тiльки трьома координатами (х, у, z), а й за допомогою радiуса-вектора. Радiус — вектором точки називається вектор, який проведено з початку координат у дану точку (рис. 1.5). Радiус-вектор може бути записаний через його проекцiї на вiдповiднi координатнi осi: (1.1) та за модулем: , (1.2) де - одиничні вектори (орти) відповідних осей координат: де Оскільки формули (1.1) і (1.2) можуть бути записані ще й так: , (1.3)
. (1.4) У фізиці прийнято модуль будь-якого вектора позначати а. Зрозумiло, що пiд час руху матерiальної точки‚ її радіус-вектор, шлях та координати з часом змiнюються. Вiдповiдно до цього в кiнематицi використовуються три способи описування руху: — векторний, коли вiдоме рiвняння залежностi радіус-вектора точки вiд часу: (1.5) — траєкторний, коли вiдоме рiвняння руху точки вздовж траєкторії: (1.6) — координатний, коли вiдомi рiвняння руху точки в декартових координатах: х = х(t), у =у(t), z=z(t). (1.7) Рiвняння (1.5), (1.6), (1.7) називаються кінематичними рiвняннями руху. Основна (пряма) задача кiнематики полягає в тому, щоб за кiнематичними рiвняннями руху знайти положення матеріальної точки в просторi i кiнематичнi характеристики руху в будь-який момент часу. 1.3. Кiнематичнi характеристики поступального руху матерiальної точки До кiнематичних характеристик поступального руху вiдносяться: перемiщення, швидкiсть та прискорення. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |