Кут повороту
Положення матерiальної точки пiд час руху по колу можна визначити кутом повороту . Як видно з рис. 1.11,а, кут повороту з центральним кутом, який вiдповiдає дузi , описанiй матерiальною точкою за час . Вимiрюється кут повороту в радiанах (рад) i є скалярною величиною. Один оберт точки по колу дорiвнює 2 , а при N обертах:
(1.39)
Із геометрiї вiдомий зв’язок мiж довжиною дуги та кутом повороту:
(1.40)
де R— радiус кола. Для малих промiжкiв часу цей вираз матиме вигляд:
(1.41)
де - елементарний кут повороту. Для того, щоб показати i напрямок руху точки по колу, домовились елементарний кут повороту показувати як вектор , що вiдкладається вздовж осi обертання. Напрямок вектора визначається за правилом правого гвинта: вектор елементарного кута повороту збiгається за напрямком з поступальним рухом гвинта, ручка якого обертається в напрямку руху точки по колу (рис. 1.11,а). Такi „штучні” вектори називаються псевдовекторами. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | Поиск по сайту:
|