АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основне рiвняння релятивістської динамiки

Читайте также:
  1. Основне обладнання
  2. Основне поняття про гру. Рухлива гра як вид діяльності.
  3. Основне про ліцензування будівельної діяльності
  4. Основне рiвняння динаміки обертального руху абсолютно твердого тiла
  5. Право власності - основне речове право у сфері господарювання: поняття та зміст
  6. Розташувати вікна Access так, щоб вікна макросів і основне вікно бази даних не перекривали один одного.

Вiдповiдно до принципу вiдносностi Ейнштейна, всi закони природи повиннi бути iнварiантними вiдносно до iнерцiальних систем вiдлiку. Iншими словами, математичний запис законiв повинен мати однаковий вигляд в усiх цих системах.

Виявляється, що основне рiвняння динамiки Ньютона у виглядi не вiдповiдає цьому принципу. Разом з тим у теорiї вiдносностi доведено, що його задовольняє рівняння

, (4.13)

де — сила, що дiє на частинку. Наведене рiвняння за виглядом повнiстю збiгається з основним рiвнянням ньютонiвської динамiки (2.13), але фiзичний змiст рiвняння (4.13) iнший. У цьому рiвняннi злiва стоїть похiдна не вiд класичного, а вiд релятивiстського iмпульсу. Пiдставимо вираз (4.12) у рiвняння (4.13) i одержимо:

. (4.14)

Вираз (4.14) i є основним рiвнянням релятивістської динамiки. Вочевидь, що саме у такому виглядi рiвняння (4.14) приводить до збереження iмпульсу для вiльної частинки () i при υ -- с приймає форму основного рiвняння ньютонiвської динамiки (; де ).

З основного рiвняння релятивiстської динамiки (4.14) випливає несподiваний висновок: вектор прискорення частинки загалом випадку не збiгається за напрямком з вектором сили . Дiйсно,

,

де — релятивiстська маса.

Продиференцiювавши цей вираз за часом, одержимо

(4.15)

Вираз (4.15) графiчно зображено на рис. 4.3, з якого видно, що вектор прискорення не є колiнеарним вектору .

Зазначимо, що вектор прискорення збігається за напрямком з вектором сили тiльки у двох випадках: а) вектор сили перпендикулярний до вектора швидкостi (поперечна сила); б) вектор сили паралельний вектору швидкостi (поздовжня сила). Оскiльки у першому випадку сила, що дiє на частинку — поперечна, то вона змiнює тiльки напрямок швидкостi й не змiнює саму величину швидкостi, тобто . За такої умови похiдна у виразi (4.15) дорiвнює нулю (релятивiстська маса m залежить вiд швидкостi, але в даному випадку , отже i ), i рiвняння (4.15) набуває вигляду

або

(4.16)

Вектори i збігається за напрямком.

У разі поздовжньої сили ( паралельна ) рiвняння (4.15) маємо право просто переписати у скалярному виглядi. Взявши похiднi у лiвiй частинi цього рiвняння, матимемо

,

звідки

або у векторному вигляді

(4.17)

З виразiв (4.16) i (4.17) бачимо, що за однакових в обох випадках значеннях сили F i швидкостi υ поперечна сила надає частинцi бiльшого прискорення, нiж поздовжня сила.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)