|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Прискорення
Прискоренням називається фiзична величина, що характеризує змiну швидкостi з часом. Розрiзняють прискорення середнє i миттєве. Середнє прискорення ()— це векторна величина, що визначається вiдношенням змiни швидкостi до промiжку часу , за який ця змiна вiдбулася: (1.16) Напрямок вектора збігається з напрямком . Миттєве прискорення (або просто прискорення) , тобто прискорення в певний момент часу це границя, до якої прямує середнє прискорення при (1.17) Використовуючи рівність (1.16) маємо, (1.18) Прискорення є векторна величина, що дорівнює похiднiй вектора швидкості за часом. З урахуванням формули (1.16) прискорення можна записати як другу похiдну радіус-вектора за часом: (1.19) Як буде показано далi, в загалом вектор спрямований пiд кутом до вектора в бiк угнутостi траєкторiї. На рис. 1.8. вектор вiдповідає прискореному руху, вектор —сповiльненому руху. Оскiльки змiна швидкостi вiдбувається i за модулем i за на напрямком, розрiзняють двi складовi прискорення: - прискорення (дотичне), яке характеризує змiну швидкості за модулем i спрямоване по дотичнiй до траєкторії; - нормальне прискорення (доцентрове), яке характеризує змiну швидкості за напрямком i спрямоване по нормалi до траєкторії. Повне прискорення дорівнює їх векторнiй сумi (1.20) Для знаходження цих складових прискорення, пiдставимо вираз для швидкостi в означення (1.18) i зробимо вiдповiдне диференцiювання:
Враховуючи, що , а можна подати у виглядi:
Матимемо вираз: (1.21) Можна показати, що , (1.22) де - орт нормалі, R – радіус кривизни траєкторії в даній точці. Остаточно вираз (1.21) набуде вигляду: (1.23) Порiвнюючи цей вираз з рiвнянням (1.20) бачимо, що перший член виразу визначає тангенцiальне прискорення (1.24) що спрямоване по дотичнiй до траєкторiї в данiй точцi i за модулем дорівнює . (1.25) Другий член визначає нормальне прискорення , (1.26) що спрямоване по нормалi до траєкторії в данiй точцi (тобто до центру кривизни траєкторiї) i за модулем дорівнює (1.27) Як видно з рис.1.9, модуль повного прискорення (1.28) Аналогiчно до того, як записувався вектор швидкостi, вектор прискорення теж можна подати через проекцiї на координатнi осi: (1.29) (1.30) Цi проекцiї знаходяться як похiднi за часом: (1.31) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |