АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Прогнозирование на основе тренда и колеблемости

Читайте также:
  1. VI. Педагогические технологии на основе эффективности управления и организации учебного процесса
  2. VII. Педагогические технологии на основе дидактического усовершенствования и реконструирования материала
  3. А) Существительные с неподвижным ударением на основе.
  4. А. Однофазное прикосновение в сетях с заземленной нейтралью
  5. Алгоритм цифровой подписи на основе эллиптических кривых ECDSA
  6. Анализ и прогнозирование товарооборота организаций общественного питания как части розничного товарооборота
  7. Анализ платежеспособности предприятия на основе показателей ликвидности баланса
  8. Бытие в соприкосновении
  9. В основе деятельности нервной системы лежит рефлекс.
  10. В основе обучения чтению – не буква, а звук.
  11. В основе рефлексивного управления.
  12. В основе руководства и лидерства лежат влияние и власть.

Прогнозирование возможных значений признаков изучаемого объекта — одна из основных задач науки. В ее решении роль статистических методов очень значительна. Одним из них является расчет прогнозов на основе тренда и колеблемости динамического ряда до настоящего времени. Если мы будем знать, как быстро и в каком направлении изменились уровни какого-то признака, то сможем узнать, какого значения достигнет уровень спустя известное время. Методика статистического прогноза по тренду и колеблемости основана на их экстраполяции, т.е. на предположении, что параметры тренда и колебаний сохраняются до прогнозируемого периода. Такая экстраполяция справедлива, если система развивается эволюционно в достаточно стабильных условиях. Чем крупнее система, тем выше вероятность сохранения параметров ее изменения, конечно, на срок не слишком большой! Обычно рекомендуют, чтобы срок прогноза не превышал 1/3 длительности базы расчета тренда.

В отличие от прогноза на основе регрессионного уравнения прогноз по тренду учитывает факторы развития только в неявном виде, и это не позволяет «проигрывать» разные варианты прогнозов при разных возможных значениях факторов, влияющих на изучаемый признак. Зато прогноз по тренду охватывает все факторы, в то время как в регрессионную модель невозможно включить в явном виде более 10—20 факторов в самом лучшем случае.

 

 

Сущность прогноза на основе тренда хорошо иллюстрируется следующим рассказом о греческом философе Диогене, жившем в большой бочке на берегу Саронического залива, недалеко от афинского порта Пирея. Как-то вечером Диогена стал окликать снаружи неизвестный. Диоген вышел к нему. «Скажи, мудрый человек, — спросил путник, — дойду ли я к закату в Афины?» Диоген посмотрел на него и сказал: «Иди!» Путник повторил свой вопрос. «Иди!», — закричал Диоген, и путник, пожав плечами, побрел по берегу. «Вернись!», — снова закричал Диоген, и путник вернулся к нему. «Вот теперь я тебе скажу, что до заката ты не дойдешь до Афин. Оставайся у меня». «А почему же ты сразу мне это не сказал, а прогнал меня?» Диоген усмехнулся: «А как же я скажу, дойдешь ли ты до Афин, если я не видел, как быстро ты ходишь?» Прогноз по тренду — это и есть Диогенов прогноз на основе того, как изучаемая система «шла» до настоящего времени.



Рассмотрим методику прогнозирования по тренду с учетом колеблемости на примере цен на нетопливные товары развивающихся стран, тренд и колеблемость которых были измерены в подразд. 12.6 и 12.7 (табл. 12.5 и 12.8). За основу прогнозов возьмем параметры, полученные методом многократного скользящего выравнивания. Параллельно будет показана и методика расчетов при однократном выравнивании.

Это означает, что наиболее вероятное значение индекса цен на нетопливные товары развивающихся стран в 1998 г. составит около 89% к уровню цен 1990 г., принятому за 100%. Однако параметры тренда, полученные по ограниченному числу уровней ряда, — это лишь выборочные средние оценки, не свободные от влияния распределения колебаний отдельных уровней во времени, как уже сказано ранее. При изменении базы расчета тренда, если, скажем, взять 1977—1993 гг. или 1981 — 1997 гг., были бы получены несколько иные значения параметров, а значит, и другие значения р1998- Прогноз должен быть вероятным, как всякое суждение о будущем.

 

513

 

514

Из имеющейся информации нельзя извлечь больше, чем в ней содержится: как в физике действует закон сохранения массы и энергии, импульса («количества движения»), так здесь действует закон сохранения информации: увеличивая точность, мы понижаем надежность, увеличивая надежность — понижаем точность. Методика анализа и прогнозирования тоже имеет значение. Она определяет степень полноты извлечения информации, содержащейся в исходном ряду динамики. С помощью методики многократного выравнивания удается более полно извлечь информацию о тренде и уменьшить среднюю ошибку прогноза его положения в прогнозируемом периоде с 5,44 до 4,39. Однако, как видно из (12.41), главной составляющей ошибки прогноза конкретного уровня в нашем расчете является не ошибка прогноза положения тренда, а колеблемость уровней около тренда. Поэтому ошибка прогноза конкретного уровня незначительно сократилась за счет многократного выравнивания. При слабой колеблемости уровней и прогнозировании на значительное удаление от базы главную роль станет играть ошибка положения тренда. Тогда многократное выравнивание даст значительное сокращение средней ошибки прогноза конкретных уровней. Но в любом случае эта ошибка всегда больше показателя колеблемости уровней — среднего квадратического отклонения Sy^K В указанной литературе содержатся формулы для вычисления средней ошибки прогноза положения линии тренда при параболической и экспоненциальной его формах . Если средняя ошибка положения тренда вычислена, ошибку конкретного уровня при любой форме тренда вычисляют по формуле (12.41).

--------------------------------------

'Четыркин Е. М. Статистические методы прогнозирования. — М.: Статистика, 1977.

2Юзбашев М. М., Манелля А. И. Статистический анализ тенденций и колеблемости. — М.: Финансы и статистика, 1983.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)